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The dynamical properties of a system of soft rods governed by stochastic hard collisions (SHCs)
have been determined over a varying range of softness using molecular dynamics simulations in one
dimension and analytic theory. The SHC model allows for interpenetration of the system’s constituent
particles in the simulations, generating overlapping clustering behavior analogous to the spatial
structures observed in systems governed by deterministic bounded potentials. Through variation of
an assigned softness parameter δ, the limiting ranges of intermolecular softness are bridged, con-
necting the limiting ensemble behavior from hard to ideal (completely soft). Various dynamical and
structural observables are measured from simulation and compared to developed theoretical values.
The spatial properties are found to be well predicted by theories developed for the deterministic
penetrable-sphere model with a transformation from energetic to probabilistic arguments. While the
overlapping spatial structures are complex, the dynamical properties can be adequately approximated
through a theory built on impulsive interactions with Enskog corrections. Our theory suggests that
as the softness of interaction is varied toward the ideal limit, correlated collision processes are less
important to the energy transfer mechanism, and Markovian processes dominate the evolution of the
configuration space ensemble. For interaction softness close to hard limit, collision processes are
highly correlated and overlapping spatial configurations give rise to entanglement of single-particle
trajectories. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918370]

I. INTRODUCTION

The prediction of an atomistic system’s macroscopic ob-
servables from microscopic physical characteristics is often
intractable, either by theory or computation, due to the intrinsic
complexity of the underlying dynamical rules or the size of the
system. This complexity can be simplified by identifying key
mechanisms that drive behavior and considering the system in
a reduced representation that captures these mechanisms. One
such reduction procedure is coarse-graining (CG) which has
received considerable interest due to its success in reproducing
all-atom spatial observables with significantly reduced compu-
tational resources.1–3 CG potentials have also been used to
model the effective interactions between soft macromolecules
at the mesoscale.4 Such soft matter systems exhibit a large vari-
ety of anomalous static and dynamical properties over varying
length and time scales. The broad range of these properties
enables the optimization over the domain of interactions to
result in bespoke materials for many different applications.

In systems for which finite energy costs are accrued when
constituents overlap relative to the macromolecular radius of
gyration, the effective CG potentials are bounded potentials.
Bounded potentials are finite valued at zero separation dis-
tinguishing them from atomic interactions which are infinite
valued at the origin due to nuclear repulsion. Macromolecular
systems such as dendrimers, star polymers, and ring poly-
mers have been modeled using a variety of isotropic soft-core

a)Author to whom correspondence should be addressed. Electronic mail:
hernandez@chemistry.gatech.edu.

bounded potentials4–13 that are constructed from a “top-down”
coarse-graining procedure.14

Perhaps the simplest bounded potential is the penetrable-
sphere (PS) model15

V PS(r) =



0, r > σ

ϵ, r ≤ σ
, (1)

where σ is the diameter of the particle and ϵ is a finite energy.
The PS model is a limiting case of the generalized expo-
nential model.16–19 The ubiquitous hard-sphere (HS) poten-
tial20–22 is recovered from the PS model as ϵ → ∞. In the
ϵ → 0 limit, the interactions are completely ideal. The PS
model has been extensively studied analytically and through
simulation23–29 as it provides for a simple theoretical model
describing the anomalous structural and dynamical behavior
observed in soft-matter systems. Systems governed by bounded
interactions can give rise to an interesting phase behavior
in which completely repulsive pairwise interactions give rise
to multiple occupancy lattice geometries in the formation of
“cluster crystals.”10,17,29–31 In molecular dynamics (MD) simu-
lations of the PS model, Santos and coworkers observed anom-
alous dynamical properties due to this clustering behavior.26

While the CG procedure has been shown to be an effec-
tive method for modeling structural properties,2,3 the time-
scale acceleration of dynamical observables is a known prob-
lem.32 Several methodologies including dissipative particle dy-
namics33 and multi-particle collision dynamics34,35 have been
applied to control thermal fluctuations, and thus the respective
time-scale of dynamical evolution through the construction
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of renormalized solvent-solute interactions. These simulation
protocols allow some control over time- and spatial- scale
mismatches arising from a CG procedure.

Here, we develop theory to predict the dynamical prop-
erties of a one-dimensional system evolving through the sto-
chastic hard collision (SHC) potential developed in Ref. 36.
The SHC model is an alternative to the smooth bounded poten-
tials as the representation for coarse-grained particles. It holds
the promise of speeding up molecular dynamics integration
because the former does not include explicit long-interactions.
In simulation, a softness parameter δ ∈ [0,1] bridges hard rod
(HR) (δ = 0) and the ideal (δ = 1) behavior limits. We find
that while the spatial properties are complex,37 the dynamical
properties can be predicted using Enskog corrections to Boltz-
mann kinetic theory. As shown in Fig. 1, the value of δ has
a significant influence on the dynamical behavior. In the HR
limit, the system remains well-ordered over time, experiencing
only nearest-neighbor interactions, as illustrated by trajectories
in Fig. 1(a). In the ideal limit, the particles never interact,
and each particle moves ballistically as shown in Fig. 1(d).
For intermediate values of δ, as shown Figs. 1(b) and 1(c),
complex interaction networks are generated and single-particle
trajectories become entangled. The aim of this article is to
understand the effect that these entangled interaction networks
have on the system’s dynamical observables.

One-dimensional systems are often studied because they
are analytically tractable.38–41 These analytic results provide
insight into more realistic systems in higher dimensions. The
equation of state for the HR system was solved exactly by
Tonks42 and thus, this system is colloquially known as a Tonks
gas. Further theoretical studies of the nonequilibrium prop-
erties of the HR system have also been performed, notably by
Lebowitz et al.43–45 and Jepsen.46 These theoretical predictions
have been confirmed by Bishop and Berne,47 as well as Haus
and Raveché,48 using molecular dynamics simulations.

The remainder of this article is organized as follows: in
Sec. II, details of the applied simulation methodology are pre-
sented. Sections III and IV contain theory and numerical results
for the structural and dynamical properties, respectively, of a
system of penetrable rods modeled by the SHC potential. In
Sec. V, the rate of sequential mixing is measured from simula-
tion and related to diffusional rates in configuration space.

II. MODEL AND SIMULATION DETAILS

MD simulations have been performed on a system of N
= 200 stochastically penetrable rods using a codebase devel-
oped in-house. Each rod has a length σ and mass m and is
constrained to move under periodic boundary conditions on a
line of length Lx. The initial velocities are sampled randomly
from a Boltzmann distribution and initial positions of each
particle are chosen by placing each particle’s center of mass on
a uniform lattice. Throughout this article, values of the reported
observables are reduced using σ and τ = σ/

√
kBT/m. Using

standard linear scaling, after the initial velocities are assigned,
these velocities are rescaled such that the energy of the system,
for every trajectory, is N kBT/2.

The dynamics of the system of rods are evolved through
the SHC algorithm introduced in Ref. 36. At the time tcol of a
possible hard collision between two particles i and j, a random
number aij is generated and compared to a predefined softness
parameter δ. The softness parameter is invariant during the
duration of the simulation. If aij > δ, the pair of particles col-
lides elastically and if aij < δ, there is no interaction between
that pair of particles. This algorithm generates an isotropic
stochastic bounded potential,

V SHC
ij (r) =




0, r > σ

0, r ≤ σ and aij (tcol) < δ

∞, r ≤ σ and aij (tcol) > δ

. (2)

When δ = 0, the dynamics of a system evolving through (2) is
that of a HR system and when δ = 1 that of an ideal gas with
no interaction between particles.

Each pairwise interaction is either hard or soft and can
change many times throughout the duration of the simulation.
The time-dependence of the SHC connection network can be
expressed as a symmetric adjacency matrix,

S(t) =
*......
,

s11 s12 · · · s1N

s21 s22 · · · s2N
...

...
. . .

...

sN1 sN2 · · · sNN

+//////
-

, (3)

in which each sij is a time-varying indicator taking values 1
or 0 depending on whether the pairwise connection between

FIG. 1. Representative trajectories of 15 initially neighboring particles interacting through Eq. (2) for (a) δ = 0.0, (b) δ = 0.05, (c) δ = 0.5, and (d) δ = 1.0 at
φ0= 0.75. The trajectory of each particle is shown in a different color. The x-axis shows the particles position in reduced units r/σ and the y-axis shows time
in reduced units t/τ.
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particles i and j is hard or ideal, respectively. Through Eq. (3)
and the hard sphere potential,

V HS(r) =



0, r > σ

∞, r ≤ σ
, (4)

the single-particle phase space point Γ = (ri, vi) evolves ballis-
tically, subject to the exclusion condition: |ri(t) − r j(t)| > σ
when si j(t) = 1.49 In simulation, before a sampling phase was
initiated, the system was aged for at least 105 total (hard and
soft) interactions to generate a spatially relaxed state.

The occupied volume fraction for the SHC model when
no particles overlap (δ = 0) is

φ0 =
Nσ
Lx

. (5)

For δ > 0, the rods are allowed to overlap and the effective
volume fraction φ is less than that of the HR case. Allowing
interpenetrability by varying the softness of the interaction
generates complex behavior in φ26,36,37,50 and as we show
below, these density fluctuations manifest in similar behavior
in the system’s dynamical evolution. Throughout this article,
we express the dynamical properties as a function of hard
occupied volume fraction φ0 and interparticle softness δ.

III. STRUCTURAL PROPERTIES

A. Radial distribution function (RDF)

The structure of the liquid phase of the SHC particles can
be classified through the RDF g2(r) and serves as a reference
for the dynamics discussed below. Earlier,36,37 we observed
that the RDF for the SHC particles is the same as that for the
corresponding soft particle system, and provide clearer demon-

stration with additional analytic theory below. Specifically, the
RDF at positive contact g2(σ+) and the multi-body softness
parameter ζ , presented in Ref. 36, appear in the theoretical
expressions for the transport properties derived herein. An
exact analytic expression for the RDF of the HR model was
derived by Salsburg, Zwanzig, and Kirkwood.51 This theoret-
ical prediction has been shown to agree with results obtained
from MD simulations47,48 and provides insight into the statis-
tical geometries of the liquid structures induced by short-range
interaction potentials.

The softness parameter δ has a large influence on the
functional form of the RDF. Therefore, for the SHC model,
g2 is parametrized by δ, i.e., g2 ≡ g2(r; δ). The known positive
contact values of the RDF at the limiting values of δ are

g2(σ+; 0) = 1
1 − φ0

and

g2(σ+; 1) = 1, (6)

for a Tonks gas and an ideal gas, respectively. These expres-
sions are valid at the thermodynamic limit. In SHC systems,
the ratio of negative flow to positive flow at the boundary of
the penetrative region (0 ≤ r ≤ σ) is equal to δ, i.e.,

δ =
g2(σ−; δ)
g2(σ+; δ) , (7)

where g2(σ−; δ) is the value of the RDF at negative contact.
Malijevsky and Santos23 (MS) have derived an expres-

sion for the RDF of the PS model in one dimension termed
the “low-temperature approximation” (LTA). Adapting this
derivation for the SHC model by converting the energetic
distributions to probabilistic collision arguments in terms of δ
gives

g2(r; δ) = r − σ
σ

C0(δ)Θ
(
σ − r
σ

)
+

∞
n=0

ψn

( r − nσ
σ

)
Θ

( r − nσ
σ

)
, (8)

where

C0(δ) = δ

φ0
ϵ1(ϵ0 − ϵ1) (9)

and

ψn(r) = exp [−ϵ1r] 1
φ0

rn−1

n!
(n + (ϵ0 − ϵ1)r)ϵn1 . (10)

In the equations above, ϵ1 is defined in terms of ϵ0 as

ϵ1 ≡
ϵ0 − φ0

φ0
, (11)

and is obtained by solving the equation

ϵ1 =
1 − δ
δ

((φ0 − 1)ϵ1 + φ0) exp [−ϵ1] . (12)

Equations (8)–(11) constitute the LTA of MS for g2, adapted
for the SHC model.

Equation (8) gives an excellent approximation to the RDF
in Fig. 2 across all values of δ over the presented densities.
Although not shown, the agreement between Eq. (8) and the
results measured from simulation begins to diverge at densities
above maximum HR packing fraction (φ0 > 1) and small-δ
values. Full explanations of the observed functional forms
including the characteristic convexity observed for r < σ can
be found in Refs. 36 and 37. The agreement observed between
the two models is surprising: in the PS model, particles evolve
through Hamiltonian equations of motion and the probability
of a pair overlapping is dependent on the relative velocity at the
moment of collision. This differs from the SHC model in which
the kinetic energy plays no role in the penetration probability.
Moreover, we conjecture that the SHC model samples the exact
configuration integral of the PS model.

By taking the one-sided limit of Eq. (8) asσ is approached
from the positive direction, the RDF value at positive con-
tact
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FIG. 2. The radial distribution function for (a) φ0= 0.5, (b) φ0= 0.75, and
(c) φ0= 0.85 and various values of δ. The solid line is the result of MD
simulations. The dashed line is the results given by Eq. (8).

g2(σ+; ϵ0(δ)) = ϵ0 − φ0 + exp[1 − ϵ0/φ0](φ0ϵ0 − ϵ0 + φ0)
φ2

0
(13)

can be expressed in terms of φ0 and ϵ0. The known contact
values in the HR (δ = 0) and ideal (δ = 1) limits can also be
recovered from Eq. (13).

B. Solvation shells and multi-body softness

As the density of the SHC system is increased toward
the maximum HR packing fraction, multi-body interactions

contribute significantly to the pairwise potential of mean force
(PMF) w2(r; δ). The PMF is defined in terms of g2(r; δ)
by

w2(r; δ) = − 1
β

ln [g2(r; δ)] , (14)

where β = 1/kBT . These structural transitions can be observed
by comparing Fig. 2(a) with Fig. 2(c), in which, for large-δ
values, the pairwise behavior is highly uncorrelated. At small-
δ values and high density (φ0 = 0.85), the pairwise struc-
ture is highly correlated and g2 exhibits multiple solvation
shells.

The pairwise softness δ is not sufficient to describe the
induced multi-body effects observed in each solvation shell
with increasing density because the system becomes too highly
correlated.36,37 With the center of a particle as the origin, we
define the nth shell as the physical space over the radial interval
Sn = [nσ, (n + 1)σ] : n ∈ Z⋆. The probability to find another
particle in Sn, relative to the corresponding ideal gas density
over the same interval,

ζn(δ) =

(n+1)σ
nσ

e−βw2(r ;δ) dr

(n+1)σ
nσ

e−βw2(r ;1) dr

, (15)

is a metric for the degree of structural correlation. Of particular
importance is the interval defining the zeroth solvation shell
S0. We use the “zeroth” naming convention as it is common in
a Tonks gas to define [σ,2σ] as the first solvation shell. Note
that the discontinuity at r = σ for δ , 1 is handled through the
usual methods for improper integrals.52 Evaluating Eq. (15)
over S0 defines the multi-body softness ζ0, i.e., the multi-
body induced probability to find a particle at r < σ relative to
corresponding ideal gas density.

Construction of geometric correlation functions53—such
as the occupied volume fraction φ—for the SHC model, rely
on the mapping δ → ζ0. Combining Eqs. (8), (14), and (15), ζ0
can be expressed in closed form as

ζ0(δ) = 1 + ϵ0 − ϵ0/φ0

2φ0

(
δ − δϵ0/φ0 +

2φ0(1 − exp[1 − ϵ0/φ0])
ϵ0 − φ0

)
. (16)

Equation (15) can be evaluated for higher-order solvation
shells (n > 0), however, due to increasing algebraic complexity
we refrain from reproducing those expressions here.

As the limiting cases are approached, the known values
(ζ0(0) = 0 and ζ0(1) = 1) are recovered through Eq. (16).
Comparisons between the theoretical prediction for ζ0 and
the empirical result in Fig. 3 are in excellent agreement. We
have previously derived an expression for the effective volume
fraction φwhich relied on empirically measured values of ζ0.36

The agreement observed between Eq. (16) and the measured
values suggests that for a one-dimensional SHC system, φ can

now be predicted without any empirical parameterization. We
will show in Sec. IV C that ζ0 can also be used as a basis for
accurate approximations of the transport properties of the SHC
system.

The interplay between softness and density produces
emergent structural behavior over the hierarchy of solvation
shells. At the Poisson distributed (δ = 1) limit, the density
is uniform over all Sn. As δ is moved away from this limit,
structural correlations emerge. Variations in local density give
rise to the emergence of distinct structures. These transitions
can be quantified through analysis of the degree of correlation
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FIG. 3. ζ0 as a function of δ for (a) φ0= 0.25, (b) φ0= 0.5, (c) φ0= 0.75,
and (d) φ0= 0.95. In each panel, the solid curve is the result measured from
MD simulations and the dashed curve is the result given by Eq. (16). The
thick solid line (black) corresponds to the infinite dilution limit where ζ0= δ.

in each shell. While the zeroth order shell provides the most
distinct variation in behavior as illustrated in Fig. 4(a), for
n > 0 the removal or addition of density from each shell gives
insight into the assembly process, or lack thereof.

As illustrated in Fig. 4(b), for δ = 0.75, the density re-
mains approximately uniform in higher-order shells over all
values of φ0 even above the maximum HR packing fraction.
Thus, for large values of δ the system contains only small corre-
lations, and the transition into a structural regime becomes
increasingly indistinct with increasing density. The latter can
be observed in Fig. 4(a) through the approximately linear den-
sity dependence of ζ0 for δ = 0.75. The results in the opposite
small δ (=0.01) regime are shown in Fig. 4(e). For φ0 = 0.5,
the density variation is predominantly in S1, and S0 differs
only slightly from the ideal ζ0 = δ value. For large values of
φ0, the local density is more highly partitioned into S0, S2 and
S3. In this case, particle density is effectively removed from
S1, S4, and higher-order shells, increasing the degree of local
correlation inside the penetrative region. Thus, for small values
δ we do observe an emergent structural transition. The onset

of this transition can be observed in Fig. 4(a), characterized by
the sigmoid shape of the ζ0 curve for δ = 0.01.

By evaluating Eq. (15) using Eq. (8) over the correspond-
ing solvation shell, ζn can be calculated analytically. The pre-
dicted values shown in Figs. 4(b)-4(e) for φ0 < 0.95 are in
excellent agreement with simulation in liquid-like density re-
gimes. This suffices for applications to solvent mediated reac-
tions at CG length-scales, all of which occur well below the
density where the theory begins to deviate from the simulation.

C. Translational order parameters

The degree of pairwise translational order in the SHC
system can be quantified through the structural order param-
eter54,55

− s2(δ) = φ0

σ

 ∞

0
g2(r; δ) ln g2(r; δ) − [g2(r; δ) − 1] dr. (17)

As illustrated in Fig. 5(a), the values of −s2 computed for SHC
systems over a broad domain of δ increase monotonically with
φ0. This suggests a similarity to simple fluids, as they exhibit
the same trend. Moreover, in a one-dimensional SHC system,
we observe no anomalous clustering behavior, as would have
been indicated by a turnover in −s2. Anomalous structural
transitions have been previously observed in the Gaussian-core
fluid56 and the SHC model in three dimensions, as indicated
by the observation of a turnover in the value of ζ . The absence
of such a transition in the one-dimensional SHC model agrees
with the findings in our earlier work.37

Truskett and co-workers56,57 have suggested the use of the
cumulative structural order integral

Is2(r; δ) = φ0

σ

 r

0
g2(r ′; δ) ln g2(r ′; δ) − [g2(r ′; δ) − 1] dr ′

(18)

to measure the contribution that each coordination shell has
on the total pairwise order. As illustrated in Fig. 5(b), for
densities close to and greater than the maximum HR packing
fraction (φ0 > 0.95), there is less correlation inside the core
region than that observed at lower densities. Thus, overlapping
rods become less correlated with increasing density at small
values of δ and r . This decorrelation is caused by caging

FIG. 4. (a) The measured value of ζ0 as a function of φ0 for various δ values as marked. ζn as a function of φ0 for (b) δ = 0.75, (c) δ = 0.25, (d) δ = 0.05, and
(e) δ = 0.01 over the intervals of the corresponding solvation shell Sn for n ∈ {1,2,3,4}. The solid curves are the results measured from MD simulations and
the dashed curves are obtained from Eq. (15) using Eq. (8) over the corresponding solvation shell.
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FIG. 5. (a) The pairwise structural order parameter −s2 as a function of φ0
for various values of δ. (b) The cumulative order integral Is2(r ;δ) at δ = 0.01
(blue), δ = 0.25 (green), and δ = 0.75 (red) for φ0 ∈ {0.5,0.75,0.95,1.25}.

effects where a cluster of overlapping particles are forced into
heavily overlapped states by the shell of particles surrounding
the cluster.

IV. TRANSPORT PROPERTIES

Bishop and Berne performed computer simulations of
a one-dimensional HR system47 and confirmed earlier theo-
retical predictions with respect to the dimensional scaling
behavior of dynamical properties. The results of these exper-
iments contradicted earlier predictions by Alder and Wain-
wright58 who used pioneering methods of computer simulation
to predict the observables of hard body systems in higher
dimensions.59 The transport properties of the PS model in three
dimensions have also been studied through the use of MD
simulations by Suh et al.26,60 These simulations elucidate the
influence anomalous clustering behavior has on transport prop-
erties and further suggest structural and dynamical measur-
ables that are ill defined in hard body systems but useful for
describing soft systems. All of these measures together serve
as a useful benchmark to characterize the dynamical behavior
of the SHC particles and the degree to which they behave like
soft or hard particles with varying softness parameter δ.

A. Collision frequency

There are two types of “collisions” between pairs of parti-
cles in the SHC algorithm: (1) hard elastic collisions that
are analogous to those observed in hard-body systems, and
(2) extremely soft collisions in which there is no repulsion
between a given pair of particles. For simplicity, we refer to
these as hard and soft interactions, respectively. Note that our
definition of soft collisions differs with that used by Santos
and coworkers26 to characterize MD simulations of the PS

model, wherein they define soft collisions as those that involve
refractive-type interactions.

The mean free path λ, defined as the average distance a
single particle travels between collisions, is the characteristic
length scale of ballistic motion. In systems evolving through
continuous potentials, particularly in the liquid state, particles
constantly interact and the notion of discrete and impulsive
events, i.e, collisions, is ill-defined. For hard-edge potentials,
such as the HS, PS, and SHC models, the free path can be
readily defined. Its value is directly related to the collision
frequency ω and the rate of temporal decorrelation governing
transport properties.

Boltzmann kinetic theory predicts that for a system of
rarefied HRs in one dimension, the mean free path is

λB =
σ
√

2φ0
. (19)

This results from the fact that g2(r) is a step function satisfying
the condition that g2(σ+) = 1 at infinite dilution. As the density
of the system is increased from this limit, the constituent parti-
cles take on a structured state and Eq. (19) must be modified
by the Enskog factor χ,26,61

λh =
λB

χ
, (20)

where χ = g2(σ+) is the radial distribution function at positive
contact. For finite densities (φ0 > 0), g2(σ+) , 1 and λh < λB.
The latter arises from the density-dependent intrinsic structure
of the constituent particles.

In systems evolving through the stochastic collision rules
defined by Eq. (2), the softness δ has a large effect on the static
structure and hence on the RDF at positive contact g2(σ+; δ).
Due to the stochastic collision probability, Eq. (20) must be
modified by a factor (1 − δ) giving

λh(δ) = σ
√

2φ0

(
1

(1 − δ)g2(σ+; δ)
)
, (21)

which is the Enskog-modified mean free path for a system
evolving under the stochastic potential (2).

The frequency of hard collisions for a single particle
can be expressed through Eq. (21) and the average speed ⟨v⟩
=
√

2kBT/πm of a one-dimensional Maxwellian system as

ωh =
⟨v⟩
λh
. (22)

The frequency of soft collisions,

ωs =
⟨v⟩
λB
g2(σ−; δ), (23)

depends on λB and the RDF at negative contact g2(σ−; δ). Note
that a mean free path for a soft-particle system is ill-defined
because of the long-range nature of the interaction potential.
The total collision frequency

ωtot = ωh + ωs (24)

can therefore be expressed in terms of the positive and negative
RDF contact values,

ωtot(δ) = ⟨v⟩
λB

(
g2(σ+; δ)

g2(σ−; δ) (g2(σ+; δ) − g2(σ−; δ))
)
. (25)



154906-7 Craven, Popov, and Hernandez J. Chem. Phys. 142, 154906 (2015)

FIG. 6. (a) The reduced hard collision frequency ω{r}
h =ωhτ as a function

of δ. (b) The reduced soft collision frequency ω{r}
s =ωsτ as a function of

δ. For both (a) and (b), the curves given by Eqs. (22) and (23), respectively,
are shown using empirical values (solid) and theoretical values (dashed) for
g2(σ+;δ). The circles are the results measured from MD simulations. (c) The
reduced hard collision frequency scaled by φ0 as a function of δ. Inset is the
reduced total collision frequency ω{r}

tot measured from simulation. The solid
vertical line (δ = 0.5) is the point where ω{r}

h =ω
{r}
s . In all panels, the colors

correspond to respective φ0 values shown in the legend of (a).

To calculate the collision frequency from simulation, 100
trajectories were propagated for each parameter set {φ0, δ}.
After the initial relaxation phase described in Sec. II, each
trajectory was computed until 105 collisions had occurred and
ω was calculated over these collisions. The theoretical and

simulated collision frequencies are shown in Fig. 6. While ωs
is an approximately linear function of δ, ωh is highly non-
linear in the small-δ regime at large densities. The scaled hard
collision frequencies, ωh/φ0, shown in Fig. 6(c), illustrate the
result that the hard collision frequency does not scale linearly
with density. The measured results for total collision frequency
ωtot are shown in the inset in Fig. 6(c). As expected, for δ = 0.5,
the hard and soft collision frequencies agree, i.e., ωh = ωs.

B. Velocity autocorrelation function

For an infinite system of hard point particles with Max-
wellian distributed velocities, Jepsen46 presented an exact
solution for the normalized velocity autocorrelation function
(VACF),

ψ(t) = ⟨vx(0)vx(t)⟩
⟨vx(0)vx(0)⟩ , (26)

and predicted an asymptotic decay with a negative tail scal-
ing as t−3. This result was later confirmed in simulation.47,48

Lebowitz et al. predicted that the short-time decay of a HR
system could be well approximated by an exponential func-
tion whose rate constant is proportional to the HR collision
frequency ωh(0). Following the prediction by Lebowitz et al.
and the Enskog prediction for the decay rate of an uncorrelated
collision process, a natural approximation for the VACF of the
SHC model is

ψE(δ; t) = e−2ωh(δ) t, (27)

where ωh (δ) is the hard collision frequency given by Eq. (22).
This exponential decay is observed in other systems such as a
Langevin equation with Markovian noise.

A comparison between the values for the VACF measured
from simulation and predicted by Eq. (27) is shown in Fig. 7
for various values of φ0 and δ. The MD simulations were
performed in the NVEP ensemble which is achieved by setting
the total momentum of the system to zero through standard ve-
locity scaling procedures.62 In the liquid-like density regimes,
both results are in agreement. Moreover, the short-time decay
of the VACF is approximately exponential for all values of δ,
while the long-time decay shows exponential behavior only

FIG. 7. Semi-log plots of the veloc-
ity autocorrelation ψ(t ;δ) for vari-
ous values of δ at (a) φ0= 0.25, (b)
φ0= 0.5, (c) φ0= 0.75, and (d) φ0
= 0.95. The solid curves are the results
measured from MD simulations. The
dashed curves are the Enskog results
ψE(δ;t) given by Eq. (27). The x-axis
shows time in reduced units t/τ.
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in the large-δ regime. This is caused by the anticorrelation
of collision events as δ is increased toward the completely
uncorrelated ideal δ = 1 limit.

As illustrated in Fig. 7(d), for φ0 = 0.95 and δ ∈ {0.01,
0.025}, ψ (t) becomes more anticorrelated after the initial
exponential decay than for the HR (δ = 0) case. This phenom-
enon can be explained through density-dependent effects in the
PMF. At large-φ0 and small-δ, many sets of particles become
trapped in a clustered state. Any given particle of such sets
can escape the penetrative region only by surmounting a large
energy barrier ∆V = w2(σ−; δ) − w2(0; δ), which occurs rarely
at best.50 Thus, many sets of particles remain in a clustered
state for long times. The onset of these clusters, which are only
observed in the small-δ regime, also gives rise to the observed
increase in anticorrelation with respect to the HR case.

C. Diffusion coefficient

From the Green-Kubo relation, the diffusion coefficient
of a one-dimensional system can be expressed in terms of the
VACF as

D =
 ∞

0
⟨vx(0)vx(t)⟩ dt . (28)

To quantify the effect that the VACF negative tail has on the
diffusion coefficient, Eq. (28) can be separated into two parts:
a positive contribution D+ and a negative contribution D−. The
negative contribution arises over the domain of ψ(t; δ) with the
negative tail. The total diffusion coefficient is the sum of these
contributions, D = D+ + D−.

The positive contribution is computed by integrating the
VACF measured from simulation up to the time tc when its sign
first changes from positive to negative

D+ =
 tc

0
⟨vx(0)vx(t)⟩ dt. (29)

At short times, the VACF in Fig. 7 was seen to be well approx-
imated by the exponential Enskog theory. This suggests that
the positive contribution to the diffusion coefficient can be
approximated by

D+(δ) ≈ kBT
m

 ∞

0
e−2ωh(δ) tdt. (30)

As can be seen in Fig. 8(a), Eq. (30) is in agreement with
results obtained by integration of Eq. (29) over all parameter
values assessed here. That is, the short-time behavior of ψ(t; δ)
is strongly exponential for all values of δ.

Comparing the measured values for D, shown in Fig. 8(b),
with the measured values for D+, it can be seen that the negative
tail, and thus D−, contributes significantly to the total diffu-
sion coefficient. This effect persists for small-δ regimes but
is less severe for large values of δ as collisions become less
correlated. It can also be observed in Fig. 8(b) that the result
for D computed using the Einstein relation from the measured
mean-square displacement is in agreement with the values
computed from the measured VACF. For large values of δ, D is
approximately linear in density which is the same general trend
observed in Fig. 6 for the collision frequency. Figure 9 shows
the ratio of theoretically predicted to numerically measured

FIG. 8. The positive D
{r}
+ =D+/σ

√
kBT /m and total D{r}

=D/σ
√
kBT /m reduced diffusion coefficients as a function of the softness

parameter are shown above. Diffusion coefficients are shown for φ0= 0.25
(blue), φ0= 0.5 (green), φ0= 0.75 (yellow), and φ0= 0.95 (red) as indicated
in the legend. Those values computed from the VACF in MD simulations are
shown as solid curves with circular markers. The dashed curves in panel (a)
are the theoretical Enskog results given by Eq. (30). The square markers in
panel (b) correspond to values obtained from the mean square displacement.
The dashed curve in panel (c) corresponds to the ζ-scaled Enskog result
obtained empirically from g2.

diffusion coefficients Dt/Dn, where the value of Dt is calculated
using Eq. (30). In the small-δ regime, this ratio ranges from
approximately 10 to 20, decreasing with increasing φ0. Mono-
tonically decreasing behavior is observed with increasing δ

FIG. 9. Semi-log plot of the ratio of the theoretically predicted to numerically
measured diffusion coefficients Dt/Dn as a function of δ for φ0= 0.25 (blue),
φ0= 0.5 (green), φ0= 0.75 (yellow), and φ0= 0.95 (red). The solid curves
with circular markers correspond to the results for Dt predicted by the Enskog
expression evaluated using empirical values of g2. The solid curves with
square markers correspond to the results for Dt predicted by the ζ-scaled
Enskog expression evaluated using empirical values of g2.
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suggesting that as the completely uncorrelated ideal limit is
approached, the Enskog approximation becomes more valid.
This ratio of diffusion coefficients decreases to /2 for δ > 0.4
over all values of φ0.

The exponential Enskog estimate for the correlation func-
tion ψ(t) does not account for the negative tail and hence, it
leads to an overestimate for D. Based on heuristic arguments,
we expect that multi-body effects contribute to the appearance
of anticorrelated decay and these effects can be accounted for
using the mapping δ → ζ0. Combining Eqs. (16), (27), and
(28), we arrive at an expression for the diffusion coefficient,

Dζ(δ) = ζ0(δ)
(

kBT
m

 ∞

0
e−2ωh(δ) tdt

)
, (31)

which we refer to as the ζ-scaled Enskog result. Figure 8(c)
illustrates the agreement observed between the ζ-scaled diffu-
sion coefficient and the diffusion coefficient measured from
simulation using Eq. (28). As shown in Fig. 9, for Dt calculated
using Eq. (31), Dt/Dn ranges between 0.85 and 1.18 for δ
> 0.2 over all values of φ0. For δ < 0.2, a maximum ratio of 2.2
is observed at φ0 = 0.95 and δ = 0.01. For all other parameter
values in the small-δ regime, the ratio ranges between 0.84
and 1.45. Thus, the Enskog expression with included ζ-scaling
gives an excellent approximation for D.

V. SEQUENTIAL ORDER AND MIXING RATES

A distinguishing feature of penetrable-rod systems, rela-
tive to the HR case, is that particles can move through each
other and the configuration-space order of particles r1 < r2
< r3 · · · < rN is not maintained. Jepsen’s derivation for the
VACF of hard point particles relies on the persistence of this
monotonic order. In a HR system, a particle at position i in this
ordering only exchanges velocities with the particles at either
the i − 1 or i + 1 nearest-neighbor positions. Knowledge of the
decay of this sequence of exchanges allows for an exact solu-
tion to the non-stationary distributions defining the dynamical
observables.46 However, when particles are allowed to pene-
trate due to boundedness in the intermolecular potential, the
ordering of particles will not be maintained. Thus, for any colli-
sion event, the particle at the position i can exchange velocities
with any other particle. Moreover, during soft collision events

the order of the particles can be altered. The dynamics of a
particle in a penetrable system is thus entangled with all other
particles.

As an example of a change in order, consider a set of N = 7
rods, ordered by position, with the location of an arbitrary
rod chosen as the origin. The corresponding order of particle
indices at an arbitrarily chosen initial time t0 generates the
sequence order

O(t0) = {1,2,3,4,5,6,7} .
In a HR system, for all t, O(t) = O(t0) as this sequence will
never change. Representative configurations for the initial
configurations of penetrable (δ > 0) systems are shown in
Figs. 10(a) and 10(d). After propagating the system for the
time t1 − t0, the sequence of indices ordered by position will
be altered due to interpenetration of the rods. A representative
spatial configuration and sequence,

O(t1) = {1,3,5,7,2,4,6} ,
generated after this evolution is shown in Fig. 10(b). The
manner and degree to which dynamical observables are corre-
lated to sequential order provides a route to determining the
kinetic properties in a physically relevant space that differs
from either configuration or phase spaces.

To develop an observable metric, we examine the rate
of mixing of the modular distance between nearest neighbors
in sequential space. The modular distance between a pair of
particles at positions i and i + 1 in a sequence O is given by

Mi(N,Oi,Oi+1) = min(|Oi − Oi+1|,N − |Oi − Oi+1|), (32)

where the subscript indices are mod N with offset 1, i.e, i
= N + 1 = 1, to account for periodic boundary conditions. The
average value ofM for the sequence state O is

Ω
s(N) = 1

N

N
i=1

Mi(N,Oi,Oi+1), (33)

which can be used to quantify and compare the degree of
sequential order for differing sequences. Moreover, the nearest
neighbor adjacency matrix

FIG. 10. Representative spatial and se-
quential configurations for a system
evolving through Eq. (2). Panels (a),
(b), and (c) show spatial configura-
tions (left) generating the sequences O
(shown below) for minimum, arbitrary,
and maximum values, respectively, of
Ω. In each spatial configuration, the par-
ticles are colored according to the se-
quential index. These configurations are
shown for N = 7, representing the cases
where N is odd. Shown to the right in
each panel is the corresponding graph
O(t) in which each node corresponds
to a specific particle, as marked, and
the red lines show the connection to the
nearest neighbor. Panels (d), (e), and (f)
show the corresponding configurations
for N = 6, representing the cases where
N is even.
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FIG. 11. Semi-log plot illustrating the
time dependence of Ω with N = 20 for
(a) φ0= 0.25 and (b) φ0= 0.95. Re-
sults are shown for various values of δ.
The solid black line denotes the value
of Ωeq. The solid curves are the re-
sults measured from MD simulations
and the dashed curves show the results
of the exponential portion of the data,
fit to Eq. (43). The x-axis shows time
in reduced units t/τ⋆ with τ⋆=τN (N
−1)/2.

O(t) =
*......
,

o11 o12 · · · o1N

o21 o22 · · · o2N
...

...
. . .

...

oN1 oN2 · · · oNN

+//////
-

, (34)

where oij = 1 if the particles are neighboring and oij = 0 other-
wise, is a sparse array defining the connection to nearest neigh-
bors. Representative examples for O(t) are shown to the right
in all panels in Fig. 10, corresponding to the sequences shown
to the left in the same figure. Equation (34) differs from Eq. (3)
as S(t) defines the total connection network and O(t) only
represents connections to nearest neighbors.

The minimum value ofΩs is obtained when eachMi holds
its minimum value. Scaling this value by the system size N
gives

Ω
s
min =

1
N
. (35)

This minimum value is maintained throughout the course of
a simulation of HRs as the particles will never mix and the
sequential order is always maintained. As the thermodynamic
limit is approached,

lim
N→∞
Ω

s
min = 0. (36)

Defining the ensemble average over all Ωs as Ω, at time t0,
Ωmin = Ω

s
min. For the purpose of examining the time-depen-

dence of Ω, we define each trajectory to begin in the ordered
state givingΩs

min. Representative spatial and sequential config-
urations Ωs

min are shown in Figs. 10(a) and 10(d) for odd and
even N , respectively.

After evolution of the ensemble, and interpenetration of
particles, the particle sequence can be altered from its initial
order. The ensemble average at equilibrium Ωeq is achieved
when the probability for each possible value ofMi is uniform,
subject to parity conditions. This result can be derived by
considering a dummy particle and averaging over all possible
values ofM. Generating each of these values as follows: for
each of two nearest neighbor positionsM = 1, for each of two
next nearest neighbor positionsM = 2, etc., allows construc-
tion of the relevant distribution. If N is even, there is single
valueMN/2 = N/2 that must be included. The summation of
this sequence over the respective bounds, scaled by a factor
1/N , can be expressed as

Ωeq =
1

N(N − 1)
*...
,

N
2 −1
k=1

2k +
N
2

+///
-

, (37)

if N is even, and

Ωeq =
1

N(N − 1)
*...
,

N−1
2

k=1

2k
+///
-

, (38)

if N is odd. Evaluating these sums gives

Ωeq =




N2

4N(N − 1) , if N is even

N + 1
4N

, if N is odd
, (39)

and at the thermodynamic limit,

lim
N→∞
Ωeq =

1
4
. (40)

It can be immediately observed that Ω will increase from a
valueΩmin at an arbitrarily chosen initial time toΩeq as t → ∞
and the equilibrium mixed state is approached. Configurations
that contribute to Ωeq are shown in Figs. 10(b) and 10(e) for
odd and even cases. Additionally, the maximum value Ωs can
take is

Ω
s
max =




N2 − 2N + 4
2N2 , if N is even

N − 1
2N

, if N is odd
, (41)

which in the thermodynamic limit is

lim
N→∞
Ω

s
max =

1
2
. (42)

The result for Ωs
max in the case where N is odd is trivial and is

achieved when eachMi holds the maximum value (N − 1)/2.
For the case when N is even, the result for Ωs

max is stated
without proof, but has been confirmed by generating Ωs

max
through genetic optimization of O. Shown in Figs. 10(c) and
10(f) are configurations generatingΩs

max for example systems.
The sequential order parameter Ω increases in time from

an initial value Ωmin to an equilibrium value Ωeq. The equi-
librium state maximizes the information entropy of O and
represents a completely mixed system in sequential space.
Assuming that the kinetics of this process are first-order gives

Ω(t; δ) = −Ce−kΩ(δ)t +Ωeq, (43)

where kΩ is the sequential mixing rate constant and Ωeq is
the equilibrium value, given by Eq. (39). Equation (43) agrees
with our known physical criterion that Ω(t; δ) increases to Ωeq
as t → ∞. The rate of this process is an extensive property,
increasing in N , and is proportional to the number of connec-
tions, and thus possible interactions in the collision network.
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FIG. 12. Semi-log plot of the sequential mixing rate constant kΩ as a function
of δ. The solid curves with circular markers are the results measured for a
system of N = 20 particles and various φ0 values, as marked. The square
markers are the results obtained for N = 100 particles at φ0= 0.95. The
y-axis shows the rates in reduced units τ⋆/t with τ⋆=τN (N −1)/2.

Thus, to compare mixing rates for different values of N , time
must be scaled by a factor N(N − 1)/2 removing the extensive
time-dependence of kΩ.

To measure kΩ from simulation, Ω(t; δ) was calculated
over at least 8000 trajectories for each parameter set {φ0, δ}
as required to achieve convergence. The rate constant was ob-
tained by fitting the data to Eq. (43). As shown in Fig. 11, after
an initial relaxation period, the time-dependence of Ω(t; δ)
is strongly exponential. Interestingly, for large δ close to the
ideal limit the early-time kinetics are zeroth order, being linear
in time. At this limit, the trajectories of all particles become
uncorrelated and the system quickly decays to a disordered
state. However, the persistence of exponential behavior is
observed for this regime in the long-time limit.

An increase in the sequential mixing rate with increasing
density φ0 is observed in Fig. 12. This results from corre-
sponding increases in the soft collision frequency. Comparison
between the trends for kΩ and the diffusion coefficient D shown
in Fig. 8 suggests that an increasing rate of sequential mixing
leads to a decreasing diffusion coefficient. Moreover, the forms
of both D and kΩ as functions of δ are qualitatively correlated,
and both exhibit highly non-linear behavior in the small-δ
regime. A conjecture, supported by this correlation, is that the
diffusion coefficient can be derived purely from knowledge of
the decay of sequential order. It originates from the observed
correspondence in the relaxation dynamics with respect to the
physical configuration or phase space, and the sequence space.

VI. CONCLUSIONS

The dynamical properties of a system of penetrable rods
constrained to move on a line in one dimension governed
by stochastic intermolecular interactions have been studied
over varying ranges of penetrability and softness. We have
shown that through a single softness parameter, the limiting
dynamical regimes can be bridged. Various dynamical observ-
ables were determined from simulation and found to compare
favorably to theory. While the spatial structures of stochas-
tic soft-matter systems are highly complex, the dynamical
properties can be adequately approximated using modified
hard-core arguments with Enskog corrections. The decay time
constants vary with the degree of softness, but the relaxation
profiles exhibit the same shape in all the cases observed here.

This suggests that SHC dynamics are dictated predominantly
by energy transfer at collisions.

Open questions remain as to the best methodology for
mapping the kinetic distributions of coarse-grained structures
to the dynamics of the decimated all-atom systems. While it
is well-known that coarse-graining can indeed reproduce the
spatial distributions of all-atom systems,3,63–65 understanding
the coarse-grained dynamical mapping has been elusive.32 A
derivation of the exact mapping operator that reproduces the all-
atom Hamiltonian dynamics in the coarse-grained space would
have large implications for computational science as well as
for our understanding of the hierarchy of length scales when
moving from the microscopic to the macroscopic scale. The
stochastic interactions presented in this article allow for param-
etrized control of correlation between structures, bridging the
completely correlated and completely uncorrelated limits.

Extending the current single-length-scale system to a
system with multiple length scales66 provides for possible
future directions of the present work. Barkan et al.67 have
shown that the controlled assembly of particles interacting
through bounded potentials with multiple length scales allows
the generation of structures with periodic and aperiodic lattice
geometries, including quasi-crystalline phases. Archer et al.
have shown that in a system of two-length-scale, soft-core
(bounded) particles, there exists a crystal-liquid state as char-
acterized by a set of mobile particles inside a lattice structure.68

Extending the SHC model to have multiple regions of stochas-
tic penetration could give rise to similar structural behavior and
allow for probing such systems at constant temperature.

The application of stochastic bounded potentials to model
mesoscale behavior of particles at higher dimensionalities—
such as disks or spheres—provides another possible path
forward. Our current (unpublished) work suggests that the
expressions derived here can be scaled with dimensionality.
Comparing them to simulation results could provide insight
into the dynamical properties of coarse-grained particles at
higher dimensionalities.
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