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Thermalized chemical reactions driven under dynamical load are characteristic of activated dynamics for
arbitrary nonautonomous systems. Recent generalizations of transition state theory to obtain formally exact
rates have required the construction of a time-dependent transition state trajectory. Here, we show that
Lagrangian descriptors can be used to obtain this structure directly. By developing a phase space separatrix
that is void of recrossings, these constructs allow for the principal criterion in the implementation of
modern rate theories to be satisfied. Thus, the reactive flux over a time-varying barrier can be determined
without ambiguity in chemical reactions. The generality of the formalism suggests that this approach is
applicable to any activated system subjected to arbitrary driving and thermal fluctuations.
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Paramount in the formulation of the theory for chemical
reaction dynamics is the control of rates, and routes through
which reactants transform to products. The emergence of
phenomena driven under a dynamical load—such as
molecular structure assembly [1,2], molecular machines
[3,4], mechanochemistry [5–7], and electric field-induced
reactions [8–10]—has demonstrated that novel products
can be realized through nonequilibrium forcing. Such
phenomena can be captured through nonequilibrium
thermodynamic models in which external forces are repre-
sented by time-varying energy surfaces [11–14]. They have
been observed experimentally in the control of state-to-state
transitions through mechanical or temperature modulated
energy surfaces in biologically relevant systems [15–17]. In
these directed processes, the rates of the reaction can be
obtained from purely geometrical arguments through tran-
sition state theory (TST) [18–23]. The principal step in the
application of TST, and its variants, relies on the calculation
of reactive flux through a dividing surface (DS) that
separates reactant and product confirmations. In caseswhere
this DS is a surface of no return, TST is formally exact.
In autonomous Hamiltonian systems, the formulation of

normally hyperbolic invariant manifolds (NHIMs) [24–30]
has provided a critical step toward the construction of
optimal dividing surfaces. The study of NHIMs is a focus
of modern reaction dynamics as knowledge of their
geometry allows a priori determination of the character-
istics of the reaction. However, a distinguishing feature of
microscale molecular systems, with respect to macroscopic
dynamical counterparts, is the inclusion of thermal fluctu-
ations, and in a fluctuating environment, the formulation of
the NHIM as a constant energy hypersphere breaks down.
Thus, in solution and on time-varying energy surfaces,
the construction of reaction geometries has generally
been limited to theoretical constructs and localized

approximations. In this Letter, we report a methodology
for obtaining a surface of no return and the attached
reaction conduits on time-varying potential energy surfaces
subject to thermal fluctuations, described through a
Langevin equation, using the method of Lagrangian
descriptors (LDs). This opens up the possibility of address-
ing dissipative activation processes and chemical reactions
on complex energy landscapes far from the near-linear
regimes that have been accessible through perturbation
theory. It also enables the determination of exact rates for
processes occurring on time-varying energy landscapes
using the calculation of the reactive flux through the DS.
The general form of a LD [31,32] is

M�q0; t0�τ �
Z

t0�τ

t0−τ
P�q�t��dt; �1�

where P is a bounded positive quantity that depends on the
unique trajectory q�t� which evolved from q0 at time t0.
The application of LDs to nonautonomous systems has
provided insight into the phase space structures governing
dynamical evolution in aperiodically modulated fields [32],
including ocean flow patterns [31]. At microscopic length
scales, thermal forces arise from solvent-reactant and
reactant-reactant interactions. In a large number of known
cases [33], the dynamics can be represented through a
Langevin equation of motion with respect to some
characteristic configuration variable q as

mq̈ � −γ _q −
∂V�q; t�

∂q
�

������
2σ

p
ξα�t�; �2�

where γ ≥ 0 is a dissipation parameter and the stochastic
term ξα�t� is white noise obeying the statistical properties
hξα�t�i � 0 and hξα�t�ξα�t0�i � δ�t − t0� for some noise
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sequence α. The thermal degrees of freedom are expressed
in terms of the stochastic mean field ξα whose strength is
varied through the parameter σ � γkBT, thus obeying a
fluctuation-dissipation relation.
When a reaction is subjected to a time-varying external

force, a nonautonomous TS persists [34,35] and corre-
sponds to a moving bottleneck in phase space through
which reactive trajectories must pass as a product is formed.
The Eckart barrier is often used to represent molecular
reactions under stationary conditions for a given asymme-
try parameter κ representing the energy difference between
reactants and products. It can be generalized to a time-
varying form (see Fig. 1),

V�q; t� � V0�1 − κ�
1� exp �−2a�q − F �t���

� V0�1�
���
κ

p �2
4

sech2�a�q − F �t���; �3�

so as to separate reactants and products along a generalized
coordinate q subject to an external time-varying forcing
F �t�. Here, we consider the case when variations in the
energy surface V�q; t� result from a bichromatic driving
form F �t� � c1 sin�Ω1t� � c2 sin�Ω2t� which is periodic,
with a resonant frequency Ω2 � 2Ω1.
Every noise sequence ξα�t�, coupled with the realization

of the deterministic forcing F �t�, has a hyperbolic

(a)

(e)

(g) (h) (i) (j)

(f)

(b) (c) (d)

FIG. 1 (color online). Phase space contour plots of L�q0; t0� for varying values of t0 are shown in (a)–(d) for a symmetrical barrier
(κ � 1; γ � 0) and in (g)–(j) for a thermalized asymmetrical barrier (κ � 0.5; γ � 25 mu=ps). In all panels, the TS trajectory
T �t� is shown as a striped curve (white-orange) and the stable manifold is shown as a dashed curve (white). In the athermal case, T is
shown over an entire period of oscillation, while in the thermal case, it is shown over the interval �0; t0�. The time-varying potential
surface is shown above in units of kBT at 298 K, which is the temperature of the thermal bath. The corresponding values of t0 are marked
in (e) and (f) for thermal and athermal cases, respectively, with trajectories of T , F , as well as _T (units shown at right). The thermal
driving (gray) given by

R
t�Δt
t ξα�t0�dt0 is shown in (f) for each integration time step Δt � 0.001 ps [36]. Parameters in all panels are

τ � 0.5 ps, m � 10mu, c1 � c2 � 0.75 Å, Ω1 � 15 ps−1, a � 0.85 Å−1, and τw � 0.2 ps.
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trajectory T �t� [37–39] hidden in the phase space structure
that mediates reactive flow. In the field of chemical reaction
dynamics, this trajectory has been termed the TS trajectory
[40–42], and a DS attached to this trajectory is free of
recrossings. Despite its paramount importance, construct-
ing the TS trajectory in thermal environments has been
previously limited to parabolic barrier approximations, thus
limiting the applicability of TST on energy surfaces
subjected to thermal fluctuations.
As illustrated in Fig. 1, on time-varying energy surfaces,

frozen-time vector fields [38,43] provide little insight into
the complex geometry of the TS trajectory, which does not
follow the time evolution of the energetic barrier top (BT).
Instead, the TS trajectory is bounded and associated with
stable Ws and unstable manifolds Wu which separate
reactive and nonreactive basins in phase space. These
manifolds are formed by the set of initial conditions, at a
time t0, of trajectories that approach T �t� as t → ∞ and
t → −∞, respectively.WhenF �t� is a periodic function, and
the barrier motion is athermal (γ � 0), the resulting TS
trajectory is a periodic orbitOwhich has the same period as
F �t� [see Figs. 1(a)–1(e)]. In a thermal environment (γ > 0
and T > 0), T �t�will depend on the strength of the thermal
fluctuations (parametrized through σ) and the specific noise
sequence, as shown in Figs. 1(f)–1(j).
To construct the TS trajectory and associated manifolds,

we note that it is the only trajectory that remains bounded as
t → ∞ and as t → −∞. Thus, it has extremal properties;
e.g., it is the trajectory with the minimum arc length over
sufficient propagation. The LDs that correspond to the arc
length of the path traversed in configuration space over a
time τ are

Lf;b�q0; t0�τ �
Z
f;b

∥ _qc�q0; t0; t�∥dt; �4�

where the intervals of forward “f” and backward “b”
integration are �t0; t0 � τ� and �t0 − τ; t0�, ∥ · ∥ is the
Euclidean metric, and qc are generalized coordinates. In
the nonautonomous system given by Eq. (2), the manifolds
associated with the TS trajectory T are also time depen-
dent. For the case of a barrier (3) separating reactant and
product states, in a suitable phase space region Rf, holding
the coordinate q0 constant and minimizing with respect to
_q0 yields the stable manifold

Ws�q0 � C; t0� � argminLf� _q0; q0 � C; t0�Rf
; �5�

in forward time, and the unstable manifold

Wu�q0 � C; t0� � argminLb� _q0; q0 � C; t0�Rb
; �6�

in backward time about the region Rb, where argmin�·� is
the argument of the minimum function; i.e., we seek the
value of _q0 that minimizes Lf;b while holding q0 constant.
The TS trajectory can then be constructed by finding the

extrapolated point of intersection between Ws and Wu at
each time t. Alternatively, a minimization procedure can be
performed over an object that combines forward- and
backward-time information, namely, L � Lf � Lb. The
phase space coordinates of the TS trajectory at t0 can then
be constructed directly as

T �t0� � argminL�q0; t0�Rf∩Rb
; �7�

as it is the unique trajectory that remains bounded for all
time [44].
A dissipative environment leads to exponential contrac-

tion and growth in the phase space volumes for the evolution
of forward and backward trajectories, respectively. To avoid

FIG. 2 (color online). Surfaces formed by L�q0; t0� with τ �
0.5 ps are shown above for athermal symmetrical (a)–(c) and
thermalized asymmetrical (d)–(f) barriers with the corresponding
contour plot shown below in each panel. The initial times are
(from top to bottom) t0 ∈ f0; 0.129; 0.356g (left panel) and t0 ∈
f0; 0.209; 0.4g (right panel). All units and parameters are as in
Fig. 1. (g) Calculation of Lf;b with q0 held constant at the marked
values and τ � 0.75 ps.
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the dominant contribution of Lb, we renormalize the arc
length as L � gfLf � gbLb, where gf;b are weights. To
compensate for the exponential behavior of dissipation, we
have chosen gf;b � e�γτw=m for some characteristic inter-
mediate time τwwhere the typical contributions fromLb and
Lf are comparable over an ensemble of trajectories. After
this weighing procedure, the instantaneous structures of the
manifolds are revealed as valleys on the L surface, as shown
in Fig. 2 [45]. Most importantly, about the region of
intersection between the stable and unstable manifolds
Rf∩Rb, a conical structure emerges with the vertex corre-
sponding to T . As shown in Figs. 3(a) and 3(b), the stable
(unstable) manifold separates reactive and nonreactive
trajectories in forward (backward) time. Thus, the construc-
tion of these reaction conduits through a minimization
procedure on Lf;b reveals the phase space geometries [see
Figs. 3(c) and 3(d)] separating phase space basins.
The principal steps in the implementation of modern

reaction rate theory are the construction of a DS that is
crossed once and only once by reactive trajectories, and the
evaluation of the reactive flux through the DS. If a surface of
no return can be constructed, a classically exact reaction rate
can be obtained [20]. For the thermalized reactive system
evolving through Eq. (2), we construct a time-dependent DS
that is located at the instantaneous position of the TS
trajectory. This DS is free of recrossings in periodically

driven [34,35], athermal systems [see Fig. 4(a)]. We now
examine the validity of the DS constructed by minimizing
Eq. (4) in any thermal environment by focusing on the
reaction dynamics of an ensemble of trajectories. Each
trajectory has an initial positionq0 in the reactant well and an
initial velocity sampled from a uniform distribution
U�Ws�q0; 0� − 1 Å=ps;Ws�q0; 0� � 1 Å=ps�. The survival
probability of each trajectory is followed in time to compute
the normalized reactant population P�t� � nR�t�=N, where
nR�t� is the number of trajectories in the reactant well at time
t and N is the total number of trajectories. The decay rate of
P�t� depends on the choice of DS, and a recrossing-free DS
results in monotonically decreasing behavior. The use of the
instantaneous energetic BT as the DS results in oscillatory
behavior due to recrossings. As shown in Fig. 4, when using
the BT as the DS, the functional shape of P�t� mimics the
oscillatory drivingmotion. This behavior can also be seen in
parabolic systems [40–42] where the TS trajectory has a
smaller amplitude than the barrier motion itself [34,46]. The
use of the naive static surface q � 0 leads to significant
recrossings that are strongly dependent on the specific
realization of the noise ξα. This is in sharp contrast to the
monotonic behavior shown in Fig. 4(b) using the DS
constructed by the method of extremal LDs, and thereby
illustrating the nonrecrossing criterion.
In summary, we have developed a minimal and robust

methodology through the use of an extremal Lagrangian
descriptor to construct phase space separatrices and surfa-
ces of no return on time-varying energy surfaces subjected
to thermal fluctuations. These findings allow for the
classically exact calculation of reactive flux through a
recrossing-free dividing surface and have suitable applica-
tions in the development and implementation of modern
and post-modern transition state theories. The results

(a) (b)

(c) (d)

FIG. 3 (color online). Phase portraits of (a) forward-time and
(b) backward-time integration of an ensemble of trajectories in a
thermal environment. The initial position for every trajectory is
q0 � −1 Å. Pieces of the stable Ws and unstable Wu manifolds
at t0 � 0 are shown in white and marked accordingly. Contour
plots of the forward-time and backward-time surface Lf;b with
τ � 1.0 ps are shown in (c) and (d), respectively. Parameters in
all panels are as in the asymmetrical thermalized case in Fig. 1.

(a) (b)

FIG. 4 (color online). Time evolution of a swarm of trajectories
in (a) athermal and (b) thermal environments. Each trajectory is
colored according to the difference in initial velocity with respect
to the stable manifold at q0 � T �0� − 1 Å and t0 � 0. The
trajectories of two dividing surfaces: the TS trajectory (orange)
and the instantaneous BT (striped black) are also shown. The
respective reactant populations P for each choice of dividing
surface and the additional static surface q � 0 are shown below.
The system parameters are as in Fig. 1.
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reported here are obtained in the physical context of
reaction dynamics, although they are also applicable to
other dynamical systems in which noise plays a role. The
methods are generalizable over variation in geometry of the
potential and realization of the driving form. Controlling
the hyperbolic trajectories [38,39,47] and the associated
manifolds constructed in this Letter provides a critical step
toward optimal control of reaction rates and mechanisms,
and could, in the context of a general theoretical formu-
lation, facilitate the design of novel synthetic products and
materials.
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