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Deconstructing field-induced ketene
isomerization through Lagrangian descriptors

Galen T. Craven* and Rigoberto Hernandez*

The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization

are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds

of time-varying transition states as dynamic phase space objects governing configurational changes when

the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization

reaction are modeled through classical trajectory studies on the Gezelter–Miller potential energy surface

and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain

a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by

partitioning an initial phase space into basins labeled according to which product state is reached at a

given time. The borders between these basins are in agreement with those obtained using Lagrangian

descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and

extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the

applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of

regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

A purely geometrical picture of a chemical reaction, when
available, can represent the most pertinent current understanding
of the dynamics governing state transitions in activated events.
For example, transition state theory (TST) and its variants
constitute the most popular of the modern methods for prediction
of chemical reaction rates. These theories rely on geometric
information alone, requiring only knowledge of the respective
potential energy surface to allow calculation of the rates of
dynamical processes. As such, TST is a pillar of reaction dynamics
and kinetics.1–8 In activated events, the interplay between rates
and mechanisms of conversion from reactants to products can be
controlled so as to bias the reactivity and selectivity of a reaction
toward products of interest. The principal geometric structures
needed to understand these conversions are invariant manifolds
(reaction conduits) which form separatrices that distinguish
between states.

In isolated Hamiltonian systems with two degrees of freedom,
the relevant reaction dynamics can be understood through the
unstable periodic orbit dividing surface (PODS) that separates
reactant and product states.9–12 At higher dimensionality, the
PODS can be generalized to a normally hyperbolic invariant
manifold (NHIM).8,13–21 A NHIM has associated reaction cylinders
(stable and unstable manifolds) in isolated systems at energies
below bifurcation thresholds.22–25 Moreover, reactive events are

mediated by these manifolds26 on (sometimes bifurcating27)
reaction pathways attached to the NHIM. Thus, NHIMs are a
powerful methodological tool for characterizing reactive events in
Hamiltonian systems that are autonomous, that is conservative
systems that are not subject to time-dependent forces.

In the case of thermally-activated28–30 and field-induced
reactions:31–35 time-dependent normal form theory,36,37 scattering
theories,38,39 and high-order perturbation theories40,41 have
provided insight into the geometric structure of externally-
activated processes. Control of state transitions in dynamical
systems42–44 can be achieved in nonstatistical processes,45

including those with fluctuating rates.33,34,46,47 To overcome
the intrinsic complexity in these mechanisms, theories built on
stability analysis48–51 of guiding phase space objects have been
developed.33,34,52,53 Of specific interest in this class of driven
reactions are recent advances in the control of protein dynamics
using lasers54,55 and mechanical stress.56 Theories that describe
the time-dependent geometry of such systems provide a method to
obtain and manipulate the rate of transition in these, and other,
time-dependent processes.

Recently, a method relying on the construction of a Lagrangian
descriptor (LD)57 has been proposed to reveal phase objects
such as hyperbolic trajectories58,59 and invariant manifolds. This
methodology relies on computation and comparison of the arc
lengths in forward and backward time for sets of trajectories
with initial conditions in regions of phase space that are relevant
to the system dynamics. The measure of these LDs can vary
greatly on each side of a phase space boundary and their
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application to time-dependent systems has provided insight
into the structures governing dynamical evolution in ocean flow
patterns57 and other systems modulated by external fields.60 In
thermal environments, the mechanisms and intrinsic reaction
conduits that drive time-dependent reactive phenomena can
also be described by this methodology.61

Our focus here is to develop a theory for reaction dynamics
in field-induced systems through application of LDs using
isomerization of ketene as a model system. Specifically,
a time-dependent field is applied to the ketene molecule for
which the time-dependent manifolds and hyperbolic trajectories
governing reactivity are revealed through LDs. The gas-phase
(isolated) ketene isomerization reaction has received attention
both as a model to investigate geometrical properties62–65 and
for its physical importance to chemical processes such as the
Wolff rearrangement.66–68 It is also a paradigmatic example
reaction for the chemical control of interest to this work because
field-modified reactivity of ketene has been observed.69,70

To illustrate the methodology, we construct the network of
manifolds over varying field strengths and oscillation frequen-
cies. At select field parameters we observe the onset of chaos,
as characterized by entanglement of these manifolds. The
results provide insight into the treatment of field-induced
reaction dynamics and other activated events driven under
dynamical load.

1 Model and simulation details

The isomerization of ketene:

H2C1QC2QO " OQC1QC2H2 (1)

proceeds through metastable oxirene and formylmethylene
intermediates which participate in the generally accepted
mechanism for the Wolff rearrangement.68,71 Using the structural
calculations of Scott et al.,68 Gezelter and Miller (GM) constructed
a model potential energy surface for this unimolecular reaction.72

They identified normal and local modes associated with the
coupled in-plane motion of O and H atoms as the principal
reaction coordinate (q1), and the out-of-plane vibration of the
H atom in oxirene as a secondary coordinate (mode q2).62,63,72 The
potential of the multi-dimensional GM surface is

V(q1,q2) = V1(q1) + Vcoup(q1,q2), (2)

which contains a one-dimensional term (see Fig. 1) along the
fundamental reaction coordinate q1

V1 q1ð Þ ¼ a2q1
2 þ a4q1

4 þ a6q1
6 þ cq1

2e�dq1
2

; (3)

and a coupling term

Vcoup q1; q2ð Þ ¼ k1

2
q2 þ

d1q1
4

k1

� �2

: (4)

A projection of the GM potential onto the q1 � q2 plane is
shown in Fig. 1 and the system parameters are given in Table 1.
Using the GM potential, we develop two separate models (I and II)
for field-induced ketene isomerization: in Model I, the coupling

term Vcoup is ignored and an effective two-dimensional phase
space is constructed by setting k1 = 0. Model II is a four dimen-
sional phase space model, constructed by including the coupling
term and generalized velocity of mode q2.

Four transition states (TS) exist along the fundamental
reaction coordinate q1: the inner TSs (q1 = �0.5467 a0) which
separate the oxirene–formylmethylene stable basins, and the
outer TSs (q1 = �2.8047 a0) which separate the formylmethylene–
ketene basins. The indices of these TSs used herein is given in
Table 2. Further stability analysis of the TSs can be found in
ref. 65. The barrier separating oxirene and the inner TS has an
activation energy DV = 0.00067 a.u. and the formylmethylene to
outer TS barrier has a larger activation barrier of DV = 0.010 a.u.
and thus formylmethylene is correspondingly the most stable of
the two metastable structures.

Ketene is active in electric fields and susceptible to field-
induced reactivity studies.69,70 We will approximate the field-matter
interaction of ketene with a classical dipole approximation.

Fig. 1 The GM potential and corresponding structures for ketene
isomerization along the principal reaction coordinate q1 are shown in
the top panel and a contour plot of the multidimensional surface in the
q1 � q2 plane is shown below. The position of each TS is shown as a
circular marker (red) and each stable-state basin Sk is labeled.

Table 1 Parameters of the GM potential

Parameter Value

a2 �2.3597 � 10�3 (Eha0
�2)

a4 1.0408 � 10�3 (Eha0
�4)

a6 �7.5496 � 10�5 (Eha0
�6)

c 7.7569 � 10�3 (Eha0
�2)

d 1.9769 (a0
�2)

k1 (Model I) 0 (Eha0
�2)

k1 (Model II) 1.0074 � 10�2 (Eha0
�2)

d1 �2.45182 � 10�4 (Eha0
�5)
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To construct a dipole function, the geometry of each TS and
stable-basin structure was taken from ref. 68 in which Scott
et al. performed electronic structure calculations at the CCSD(T)/
6-311G(df,p) level. Using these geometries, the dipole moment of
each was computed by employing a B3LYP/6-311+G** scheme.
The results of these calculations are shown in Table 3. The dipole
moment along q1 is modeled through an approximation of
the form

mm q1ð Þ ¼ m0 exp �a q1 � q0ð Þ4
� �h i

þ m0 exp �a q1 þ q0ð Þ4
� �h i

þ mketene:

(5)

where we assume that out-of-plane hydrogen motion in oxirene
(q2) has a negligible effect on the dipole moment in the
pertinent dynamical regions and about the minimum energy
pathway. The best-fit parameters for eqn (5) were obtained from
least-squares regression to the calculated dipole moments,
yielding m0 = 0.546 ea0, a = 0.0701 a0

�4, q0 = 1.95 a0, and mketene

= 0.602 ea0. A comparison between the results given by the
model dipole moment surface m and the computational results
can be found in Table 3.

With the potential energy and dipole moment surfaces now
defined, the molecular Lagrangian for ketene can be written as

L ¼ 1

2
mf _q1

2 þ 1

2
mH _q2

2 � V1 q1ð Þ � Vcoup q1; q2ð Þ
þ EðtÞmm q1ð Þ; (6)

leading to the equations of motion

mf €q1 ¼ �
dV1

dq1
� @Vcoup

@q1
þ EðtÞdmm

dq1
; (7a)

mH€q2 ¼ �
@Vcoup

@q2
; (7b)

where E(t) is the applied electric field. Associated with each
coordinate (q1,q2) is the corresponding generalized velocity and
thus the dynamics is either two dimensional (Model I) or four

dimensional (Model II) with each phase space point represented
by q = (q1, :q1) or q = (q1, :q1,q2, :q2), respectively. A constant-mass
approximation associated with the corresponding normal mode
of the oxirene intermediate has been calculated as mf = 9581 in
atomic units (a.u.).63 The mass of the out-of-plane oxirene stretch
mode is mH = 1837 a.u.,63,65,72 the mass of hydrogen. The chosen
field takes the sinusoidal form E(t) = E0 sin(ot + f) where E0 is the
field strength, o is the oscillation frequency, and f is the phase
which is held constant (f = p). We investigate field strengths
in range of those used previously in studies of field-induced
diatomic chemical reactions,75 and also strengths in range
of ionization thresholds. The frequencies studied are below o =
0.2 a.u. (230 nm), a value previously used in experimental analysis
of the decomposition of ketene.70 Throughout this study, the
integration of eqn (7a) and (7b) is performed using a Runga–Kutta
fourth-order scheme with a time-step Dt = 0.1 (atomic units).

2 Lagrangian descriptors

The application of LDs to the study of time-dependent flows has
ranged over systems as diverse as thermal chemical reactions,61

human biomechanics,76 and ocean flow patterns.57 In the general
formulation,57,60 a LD can be expressed as

M q0; t0ð Þt¼
ðt0þt
t0�t

PðqðtÞÞdt; (8)

where P is a bounded positive quantity and a functional of the
trajectory q(t) with initial condition q0 at time t0. The integration
of this quantity is taken over the time interval [t0 �t, t0 + t] and
thereby includes information from both forward- and backward-
time. Thus, a LD is a mapping from the phase space point q0 to
the scalar value M using dynamical information obtained along a
corresponding trajectory. The LDs corresponding to arc length
measures in phase space and configuration space are useful for
constructing the manifolds associated with the TS.57,60,61 The
values of these LDs diverge on either side of a phase space
boundary separating distinct dynamical basins. These special
boundaries are manifolds and they are distinguished by drastic
changes in the derivative of M and correspond to local minima on
the M surface.

The LD corresponding to the arc length projection in
configuration space is

L q0; t0ð Þt¼
ðt0þt
t0�t

_qc q0; t0; tð Þk kdt; (9)

where qc is a set of generalized coordinates and J�J is the norm.
Thus, L is a measure of the distance traveled in configuration
space over the time interval [t0 � t, t0 + t] by the trajectory that
passes through the phase space point q0 at time t0. This LD can
be separated into forward-time

Lf q0; t0ð Þt¼
ðt0þt
t0

_qc q0; t0; tð Þk kdt; (10)

Table 2 Positions of TSs along the fundamental reaction coordinate q1

Transition state Position

TS1 (outer) �2.8047 (a0)
TS2 (inner) �0.5467 (a0)
TS3 (inner) 0.5467 (a0)
TS4 (outer) 2.8047 (a0)

Table 3 Dipole moments of various structures in ketene isomerization. All
values are reported in atomic units

Structure Computation mm Experiment

Oxirene 1.01 1.00 —
Inner TS 1.05 1.05 —
Formylmethylene 1.09 1.14 —
Outer TS 1.18 1.13 —
Ketene (q1 = 4.5 a0) 0.602 0.630 —
Ketene (lim q1 - N) 0.602 0.602 0.570 (ref. 73),

0.560 (ref. 74)
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and backward-time

Lb q0; t0ð Þt¼
ðt0
t0�t

_qc q0; t0; tð Þk kdt; (11)

components by integrating in the respective time direction. The
value of t is chosen to be long enough such that distinct
features are observed on the LD surfaces. Note that the initial
conditions of each trajectory q0(t0) = (q1(t0), :q1(t0),q2(t0), :q2(t0))
are phase space coordinates, while the integration of these
LDs is performed over projections into configuration space.
We use eqn (9)–(11) below to describe the geometry of ketene
isomerization.

With the inclusion of field–dipole coupling, the system of
eqn (7a) and (7b) becomes time-dependent. The stationary
transition states (see Table 2) now become time-dependent
and generate a set of stable manifolds Ws, unstable manifolds
Wu, and corresponding hyperbolic trajectories. The manifolds
associated with each moving TS are also time-dependent. The
direct construction of these objects can provide physical insight
into the mechanism and nature of reactions in which moving
energy barriers separate reactant and product states. The LD
procedure, requiring forward and backward integration in
time, thus provides information on how the past reaction
geometry (described by the manifold network) evolves into
the future geometry in these time-dependent flows.

The two models summarized in Section 1 contain distinct
topology due to differences in dimensionality. The complexity
of the dynamics that occur in these topological spaces can be
reduced by considering different sets of phase spaces and
phase planes in which to perform the LD analysis. Model I
has a single degree of freedom and its dynamics occur solely on
the principal reaction coordinate q1 and the corresponding
q1 �

:q1 phase space. The measure of eqn (9)–(11) in Model I
is taken over q1 as it is the only configuration space component.
The addition of a second degree of freedom q2 in Model II leads
to the generation of additional planes in phase space, e.g.,
q2 �

:
q2 and configuration space q1 � q2. While other spaces

exist, we find these planes as the most intuitive and pertinent
in which to perform analysis. Alternatively, the complex reaction
dynamics in systems with high dimensionality is often simplified
by identifying suitable collective variable reaction coordinates and
performing analysis within a reduced space. In Model II, we
therefore consider LDs constructed using the arc length measure
over q1 space alone, as it is the putative reaction coordinate. This
reductionist approach is particularly advantageous for chemical
reactions addressed through LD analysis because the dynamics
in the nonreactive modes play only a secondary role in activated
events.

3 Dynamics

We first consider an autonomous model of ketene isomerization
by removing the driving field (i.e. E0 = 0.0). In this system, the TS
saddle points are connected by a network of heteroclinic and
homoclinic loops. The heteroclinic loops consist of trajectories

that approach different TSs in the infinite past and future.
Homoclinic loops are made up of trajectories that approach the
same TS in forward and backward time. These loops correspond
to the stable (unstable in backward time) manifold for a given
saddle point TSi and are denoted as

W
i!j

TSið Þ and W
i!i

TSið Þ

respectively. The notation i - j signifies the heteroclinic connection
from TSi to TSj and i - i signifies a homoclinic connection. Note
that in backward time, the direction of the i - j connection is j - i.
These manifolds can be constructed by holding q1 constant
while minimizing the LD with respect to :

q1, and/or finding the
corresponding points where the derivative of the LD changes
‘‘abruptly.’’57,60 The manifolds are clearly visible in the top panel
of Fig. 2 as strong local minima on the L surface and the power
of LDs is evident as the manifold structure in forward and
backward time are revealed.

In this autonomous system, trajectories with initial conditions
on hyperbolic fixed points result in Lf = 0, Lb = 0, and L = 0 by
definition, and these points correspond to TS saddle points.

Fig. 2 (top) A contour plot of the Lagrangian surface L for autonomous
(E0 = 0.0) ketene isomerization in q1 �

:
q1 space. The heteroclinic and

homoclinic loops are marked as discussed in the text and correspond to
distinctive features on L. (bottom) The values of L along the constant
values of q1 given in the legend. The location of the slices corresponding
to q1 A {�2.0, �1.0,0} are shown as solid black lines in the top panel.
All parameter values are given in atomic units. For visual clarity in this
and all other figures illustrating LD surfaces, a threshold value limits the
upper bound of L and corresponds to the ‘‘max’’ value shown in the
deepest red.
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All other trajectories with initial conditions not on TSi saddle
points have LDs with positive values such that finding the minima
allows locating the TSs. This behavior is illustrated by the q1 = 0
curve in Fig. 2. The stable manifolds of these TSs can be
constructed by considering forward-time integration only. For a
chosen initial position (that is held constant), varying the initial
velocity leads to trajectories with two different behaviors: those
that are not on the stable manifold move away from the TS
(sliding down the barrier) and thus have large values of Lf over
sufficient propagation. However, on this line of constant initial
position, there is one initial velocity that gives a trajectory that
approaches the TS, remaining bounded for all time. This trajectory
belongs to the stable manifold and will have the minimum
value of Lf, as it never descends from the region of the barrier
top into the metastable energy wells. The unstable manifold can
be constructed using similar arguments on the Lb surface, and
backwards-time integration. In the bottom panel of Fig. 2, it can be
seen that the stable (unstable) manifold of each TS exhibits
distinctive features on the L surface.

Upon inclusion of the external driving field, the network of
manifolds becomes time-dependent. As shown in Fig. 3, this
network exhibits oscillatory motion due to the periodicity in
the driving form. The homoclinic and hetereoclinic loops
associated with each TS persist, albeit in a time-varying form.
This persistence would cease upon inclusion of dissipative
forces, such as those experienced by a reactive species in a
solvent environment. They do not however require periodic
driving as the arguments for uncovering the manifolds and TS
using LDs did not rest on this assumption. This opens the
possibility for addressing aperiodic driving forms, e.g., thermal
fluctuations, with the LD approach, and the resulting altera-
tions in the reactive yields in chemical reactions.

At select values of field strength and oscillation frequency
(e0 = 0.03 a.u. and o = 0.0025 a.u.), the onset of chaos is
observed as characterized by complex stretching and contracting
behavior in phase space leading to entanglement of the stable
and unstable manifolds. This behavior can be seen in Fig. 4. At
these field parameters, a bifurcation threshold has been crossed
due to the appearance of additional hyperbolic points connected
by stable and unstable manifolds. While rigorous analysis of this
complex structure is beyond the scope of this manuscript,
formalisms have been developed to understand the induced
phase space partitioning.77,78 Using the method of LDs, the
complexity of this network can be simplified by constructing
both the Lf and Lb surfaces and subsequent analysis of the
dynamics in the respective time direction separately. As shown
in Fig. 5, on these unidirectional time surfaces, the corres-
ponding stable and unstable manifolds are visible as distinctive
features in the relevant phase space regions. Moreover, the
constructed surfaces Lf and Lb reveal the encapsulated reactive
(nonreactive) islands dictating the flow from reactant to product.
This method can be applied directly to ketene isomerization with
other field parameters, and, most importantly, to other general
chemical reactions, to understand how the network of mani-
folds, and the corresponding reaction dynamics, are affected by
an applied field.

Multidimensional reactive systems can also be analyzed
using the LD method. In Model II of Section 1, the out-of-plane
motion of the H atom in oxirene is a second degree of freedom
(q2) that complements the dynamics on principal reaction coor-
dinate q1. The dynamics in these two coordinates are coupled
through the potential energy term given by eqn (4). Following the
multidimensional study of ketene isomerization rates by Gezelter
and Miller in ref. 72, Ulusoy and Hernandez,62–64 and also
Mauguière et al.,65 used the GM model to examine the dynamics
of ketene in a phase space perspective. In the multidimensional
space, with inclusion of field-matter interactions, the onset of
chaotic behavior can also be observed. As shown in Fig. 6, phase
planes containing trajectories with higher initial energy result in
more dissociative-type transformations as the yield of ketene
(dark red) increases. This general trend persists with increasing
initial velocity in q1. The origin of this behavior is that larger
values of :q1(t0) increase the initial energy of each trajectory. Thus,
the likelihood of a trajectory escaping from the intermediate
oxirene and formylmethylene metastable wells is also increased

Fig. 3 Contour plots of the Lagrangian surface L for field-induced ketene
isomerization (Model I) in q1 �

:
q1 space with E0 = 0.5, o = 0.0315, t = 103,

for t0 = 0 (top), t0 = 75 (middle), and t0 = 100 (bottom). All parameter values
are given in atomic units.
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as energy from the velocity space is transferred into the reaction
coordinate. Note the measure of Lf is taken over q1 only. Although
not shown, we also observed improved ketene yields with
increasing q2 and :q2. In this case, the energy transfer into q1

occurs through coupling on the potential energy surface.

4 Reactivity and final-state basins

The reactivity and selectivity of ketene isomerization, dynamically
modeled through eqn (7a) and (7b), can be examined by mapping
initial conditions in phase space to the corresponding final state
basin. This procedure involves taking a set of coordinates in the
multidimensional phase space as the initial condition for the
equations of motion, and following the evolution of trajectories
to some final time in order to determine what regions in phase
space lead to which products. A large number of trajectories
are often necessary in order to adequately sample the basin
boundaries as initial conditions are, most commonly, generated
using an equally-spaced grid. Creating the mapping from phase

space points to final states is analogous to the brute-force compu-
tation of basins of attraction in dynamical systems.

For the models of ketene isomerization defined in Section 1,
we can identify five stable state regions separated by TSs on
the GM energy surface. The one-dimensional coordinate q1

parameterizes the curved reaction coordinate well and can
serve as an indicator of the final state as illustrated in Fig. 1.
A mapping of each position q0 to a given final state Sk can thus
be constructed through an indicator function

S q0 t0ð Þ; tð Þ ¼

S1; q1ðtÞoTS1;

S2; q1ðtÞ4TS1 and q1ðtÞoTS2;

S3; q1ðtÞ4TS2 and q1ðtÞoTS3;

S4; q1ðtÞ4TS3 and q1ðtÞoTS4;

S5; q1ðtÞ4TS4;

8>>>>>>>>>><
>>>>>>>>>>:

(12)

according to the location of the final position of the q1-mode of
the trajectory q0(t).

For Model I, the state mapping encoded by eqn (12) is shown
in Fig. 7 over various parameter values of the driving field and
increasing integration times. Only forward-time integration is
considered, and thus the reactive regions will be separated by
stable manifolds of the TSs. In the nonchaotic regimes of
Fig. 7(a) and (b), the we observe an the regular structure seen
earlier for the manifolds obtained using LDs. In Fig. 7(c), the
reactive islands observed through direct calculation of the final
state basins are seen to correspond to regions enclosed by
the same stable manifolds observed on the forward-time LD

Fig. 4 Contour plots of the Lagrangian surface L for field-induced ketene
isomerization (Model I) in q1 �

:
q1 space with E0 = 0.03, o = 0.0025, and

t = 103, for t0 = 0 (top), t0 = 500 (middle), and t0 = 1000 (bottom).
All parameter values are given in atomic units.

Fig. 5 Contour plots of the forward-time (top) and backward-time (bot-
tom) Lagrangian surfaces Lf,b in q1 �

:
q1 space for Model I with E0 = 0.03,

o = 0.0025, t = 103, and t0 = 0. All parameter values are given in atomic units.
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surface Lf in Fig. 5. Also note that in Fig. 7(c) there is clear
evidence of chaotic mixing which was previously posited using
information from the LD surface only. As shown in all panels
in Fig. 6 corresponding to integration times t = 103 a.u., the
stable manifold network, calculated using the method of LDs
described in Section 2, is in excellent agreement with bound-
aries that separate regions of different selectivity. This result
illustrates that the manifold network dictating reactivity in
chemical reactions can be exposed using LDs.

Final state probabilities P(Sk) for several parameter ranges in
Model I are shown in Fig. 8(a)–(c). These probabilities are
calculated by counting the fraction of trajectories starting in
region R = [�3.6 a.u., 3.6 a.u.] � [�0.0022 a.u., 0.0022 a.u.] in
phase space that lead to the final states Sk for k A {1, 2, 3, 4, 5}
according to the mapping in eqn (12). In Fig. 8(a), the reaction
probabilities for the field strength E0 = 1.0 a.u. are illustrated
over varying frequencies. A distinct turnover regime in which
oxirene is favored over formylmethylene is observed over the

frequencies o A [1 a.u. � 10�5, 2.5 a.u. � 10�5] and also for
o A [7 a.u. � 10�5, 9 a.u. � 10�5]. Fig. 8(b) illustrates reaction
probabilities for a reduced field intensity E0 = 0.2 a.u. over the
frequency regime [1 a.u. � 10�3, 1 a.u. � 10�2]. For this field
strength and frequency o = 0.001 a.u., almost all trajectories
lead to the production of ketene. At an order of magnitude
larger frequency (o = 0.01 a.u.), the yields of the autonomous
system are approached. As shown in Fig. 8(c), increasing
the field strength while holding the frequency constant at
o = 0.0025 a.u. leads to monotonically increasing yields of
ketene. Note that as E0-0, the final state probabilities for the
autonomous system are recovered.

The final state mapping procedure can also be performed in
multidimensional dynamical systems. In the case of ketene
isomerization represented by Model II, the configuration space
q1 � q2 is two-dimensional and trajectories evolve on the
potential energy surface shown in the bottom panel of Fig. 1.
The LD method allows examination of multidimensional
dynamics and verification of the constructed phase space
boundaries by comparison to the final state basin mappings.
It can also be used to provide qualitative information about a
reactive system, such as the location of strong gradients which
lead to regions corresponding to state transitions. As illustrated
in Fig. 9, the same general trends are observed in configuration
space as were observed in the principal phase space q1 �

:
q1

insofar as phase planes containing trajectories with larger
initial kinetic energies lead to increased ketene production.
This general trend can also be observed in Fig. 8(d) where it is
shown that increasing the initial velocity :

q(t0) in the principal
reaction coordinate leads to the production of more ketene,
and thus larger values of P(S1) and P(S5). Comparisons of the
forward-time LD surface (Lf) and final state basin mapping for
both autonomous and field-driven ketene isomerization are
shown in Fig. 9 and 10, respectively. Over the parameters values
studied, the complexity of the final-state basin mapping is
recovered using LDs, that is, the Lf surface almost perfectly
mimics the S mapping. The results from these calculations
imply that the physical insight gained from the LD method is
highly dependent on the geometry of the potential energy surface,
driving form, and system dimensionality. Due to generality in the
formulation and the complexity of the underlying model of ketene,
we expect that the general trends observed here will persist in
other chemical reactions and other classes of activated events.

The existence of boundaries where the LD measure changes
quickly from areas of small arc length (dark blue) to large arc
length (dark red) in Fig. 9 and 10 may correspond to alternative
pathways in the reaction dynamics. We conjecture that these
transitions correspond to encapsulated regions of roaming
trajectories: trajectories that move from a reactant state to a
product state without nearing the bottleneck region (the canonical
transition state) in phase space. In the present case, trajectories
in these regions satisfy at least one of the roaming criteria62

by exhibiting drastically different dynamical behavior across
boundaries. What is difficult to discern from these results and
we leave to future work is whether they satisfy some of the other
requirements associated with roaming trajectories. Ulusoy and

Fig. 6 Contour plots of the Lagrangian surface Lf for field-induced ketene
isomerization (Model II) in q1 �

:
q1 space with E0 = 0.03, o = 0.0025,

t = 2.5 � 103, and q2(t0) = 0 for
:
q2(t0) = 0 (top),

:
q2(t0) = 0.001 (middle), and

:
q2(t0) = 0.002 (bottom) with t0 = 0. The measure of Lf is taken over q1

space. All parameter values are given in atomic units.
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Hernandez investigated this phenomena in autonomous
ketene isomerization using classical calculations on the GM

surface and found these types of trajectories exist, but do not
contribute significantly to the isomerization reaction rate.

Fig. 7 Final state basins in q1�
:
q1 space for Model I and (a) (E0 = 0), (b) (E0 = 1.0, o = 0.0315), and (c) (E0 = 0.03, o = 0.0025). The initial time is t0 = 0 in all

panels. From left to right, the integration times are t A {103, 104, 2.5 � 104, 5.0 � 104}. In all panels corresponding to t = 104, pieces of the stable manifold
network, as calculated using the method of LDs described in Section 2, are shown in red. All parameters values are given in atomic units.

Fig. 8 Final state probabilities P(Sk) for Model I with: (a) E0 = 1.0 and (b) E0 = 0.2, while varying o, and (c) o = 0.0025 while varying E0, as measured over
the region [�3.6, 3.6] � [�0.0022, 0.0022] in q1 �

:
q1 space. The dashed lines correspond to probabilities for the respective states in an autonomous

(E0 = 0) system. (d) Final state probabilities measured in the q1 � q2 plane over region [�3.6, 3.6] � [�3.6, 3.6] for Model II with
:
q2(t0) = 0 and E0 = 0 while

varying the initial condition
:
q1(t0). In all panels t0 = 0 and t = 105. All parameters values are given in atomic units.
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Mauguière et al.65,79,80 gave further analysis by computing
gap-time distributions, and also counting the number of
times trajectories cross dividing surfaces in phase space. They
concluded that a trajectory could be quantified as roaming
depending on the number of crossings. As a rigorous dynamical
formulation of roaming is nascent, a possible direction of future
research is to examine this phenomena using LDs. While a full
description of the existence and characterization of roaming is
beyond the scope of this manuscript, investigations are currently
underway to describe this mechanism in field-induced ketene
isomerization and other reactions.

5 Conclusions

The isomerization of ketene has been characterized using a
reduced-dimensional dynamical model and the method of
Lagrangian descriptors. The reactive system has been modeled
through the Gezelter–Miller potential energy surface and a molecular
dipole moment approximation, with both constructed from ab initio
calculations. We have examined the time-dependent stable and
unstable manifolds in field-induced ketene isomerization over
varying field strengths and field oscillation frequencies. These mani-
folds encapsulate subregions in phase space (and configuration
space) that correspond to the formation of different products. We
found that phase space separatrices dictating state transitions can
be constructed in field-induced chemical reactions thereby revealing
the underlying reactions mechanisms. Although we have considered
a periodically driven system, the methods do not rely on periodicity
for implementation and can be applied in aperiodic fields and other
driving forms, such as thermal environments, with no loss of
generality. One possible application of the presented methodology
is to predict the reactivity and selectivity of chemical reactions over
varying field shapes, envelopes, and field strengths. The formalism
developed here allows for prediction of reaction geometries in
processes occurring in complex environments, including general
stimuli-responsive phenomena.
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