
J. Chem. Phys. 147, 074104 (2017); https://doi.org/10.1063/1.4997571 147, 074104

© 2017 Author(s).

Transition state theory for activated
systems with driven anharmonic barriers 

Cite as: J. Chem. Phys. 147, 074104 (2017); https://doi.org/10.1063/1.4997571
Submitted: 24 March 2017 . Accepted: 19 July 2017 . Published Online: 15 August 2017

 F. Revuelta, Galen T. Craven,  Thomas Bartsch, F. Borondo, R. M. Benito,  Rigoberto Hernandez, et al.

COLLECTIONS

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

Chemical dynamics between wells across a time-dependent barrier: Self-similarity in the
Lagrangian descriptor and reactive basins
The Journal of Chemical Physics 147, 064101 (2017); https://doi.org/10.1063/1.4997379

Chemical reactions induced by oscillating external fields in weak thermal environments
The Journal of Chemical Physics 142, 074108 (2015); https://doi.org/10.1063/1.4907590

Solvated molecular dynamics of LiCN isomerization: All-atom argon solvent versus a
generalized Langevin bath
The Journal of Chemical Physics 144, 024104 (2016); https://doi.org/10.1063/1.4939480

https://images.scitation.org/redirect.spark?MID=176720&plid=1401534&setID=378408&channelID=0&CID=496958&banID=520310234&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ed5dd4029e63a2f75704dfd96619305ac85f9c8d&location=
https://doi.org/10.1063/1.4997571
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/1.4997571
http://orcid.org/0000-0002-2410-5881
https://aip.scitation.org/author/Revuelta%2C+F
https://aip.scitation.org/author/Craven%2C+Galen+T
http://orcid.org/0000-0003-0927-0683
https://aip.scitation.org/author/Bartsch%2C+Thomas
https://aip.scitation.org/author/Borondo%2C+F
https://aip.scitation.org/author/Benito%2C+R+M
http://orcid.org/0000-0001-8526-7414
https://aip.scitation.org/author/Hernandez%2C+Rigoberto
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/1.4997571
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4997571
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4997571&domain=aip.scitation.org&date_stamp=2017-08-15
https://aip.scitation.org/doi/10.1063/1.4997379
https://aip.scitation.org/doi/10.1063/1.4997379
https://doi.org/10.1063/1.4997379
https://aip.scitation.org/doi/10.1063/1.4907590
https://doi.org/10.1063/1.4907590
https://aip.scitation.org/doi/10.1063/1.4939480
https://aip.scitation.org/doi/10.1063/1.4939480
https://doi.org/10.1063/1.4939480


THE JOURNAL OF CHEMICAL PHYSICS 147, 074104 (2017)

Transition state theory for activated systems with driven
anharmonic barriers

F. Revuelta,1,2 Galen T. Craven,3 Thomas Bartsch,4 F. Borondo,2,5 R. M. Benito,1
and Rigoberto Hernandez6,a)
1Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingenierı́a Agronómica,
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Classical transition state theory has been extended to address chemical reactions across barriers that
are driven and anharmonic. This resolves a challenge to the naive theory that necessarily leads to
recrossings and approximate rates because it relies on a fixed dividing surface. We develop both per-
turbative and numerical methods for the computation of a time-dependent recrossing-free dividing
surface for a model anharmonic system in a solvated environment that interacts strongly with an oscil-
latory external field. We extend our previous work, which relied either on a harmonic approximation
or on periodic force driving. We demonstrate that the reaction rate, expressed as the long-time flux of
reactive trajectories, can be extracted directly from the stability exponents, namely, Lyapunov expo-
nents, of the moving dividing surface. Comparison to numerical results demonstrates the accuracy
and robustness of this approach for the computation of optimal (recrossing-free) dividing surfaces and
reaction rates in systems with Markovian solvation forces. The resulting reaction rates are in strong
agreement with those determined from the long-time flux of reactive trajectories. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4997571]

I. INTRODUCTION

The external control of reactions1–7 is increasingly a focus
in the chemical sciences because novel products, synthesized
at improved yields and selectivity, are needed for advanced
industrial applications. Catalysts are often used to acceler-
ate reaction rates and increase the efficiency of industrial
processes. Unfortunately, most catalysts can only be used to
increase the rate of chosen reactions; they do not allow a finer
control of the reaction pathway or outcome.

Several different strategies have been developed to con-
trol chemical reactions in a more flexible and accurate manner.
For example, mechanical forces have been used to control the
height of the activation barrier.8 In ultracold systems, reac-
tion rates have been seen to be strongly influenced by the
internal state of the reactants.9 However, a much more gen-
eral approach towards chemical control is available through
lasers. The amazing recent developments of this technology
have opened the route for a new, and much more accu-
rate, control of chemical reactivity that was simply incon-
ceivable a short time ago.10 Such mode-selective chemistry
permits carrying a system to a desired product state3,7,11,12

under the influence of controlled laser pulses. This huge
variety of laser-driven systems all have in common that the

a)Author to whom correspondence should be addressed: r.hernandez@jhu.edu

energetic barrier dividing the phase space of the system into
distinct regions, reactants and products, is time-dependent.
Thus, the phase space bottleneck formed at the barrier top,
which is the limiting step for the reaction to take place,
becomes also time-dependent and, as a consequence, tradi-
tional transition state theory (TST)13–20 fails to give accurate
rate predictions.

For fixed barriers, TST describes the reaction mechanism
approximately by specifying the rate-limiting bottleneck in
phase space. It allows the identification of reactive trajecto-
ries and leads to increased accuracy in the computation of
reaction rates. The fundamental challenge to the implementa-
tion of TST is to remove the approximation by constructing
an optimal dividing surface (DS) that is crossed once and
only once by all reactive trajectories.21–23 A calculation of
the flux through this DS gives the reaction rates. However,
if the DS is not strictly recrossing-free, the reactive flux is
overestimated and TST gives an upper bound of the true reac-
tion rate. The discoveries of periodic orbit dividing surfaces
(PODS)24–27 in systems with two degrees of freedom and
normally hyperbolic invariant manifolds (NHIMs) in higher
dimension19,28–40 have allowed the computation of DSs that
are free of recrossings. Unfortunately, these constructions only
apply for autonomous Hamiltonian systems that describe gas
phase reactions. Variational TST (VTST) optimizes the choice
of DS by minimizing the flux.41 Both TST and VTST can nev-
ertheless give large overestimates to the true reaction rate when
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the system is strongly coupled to an environment such as a
solvent.

A strictly recrossing-free DS can be constructed in driven
reactions with harmonic barriers using the so-called transition
state (TS) trajectory.42 The TS trajectory is the only solu-
tion of the equations of motion (EoM) that remains close
to the energetic saddle point for all times. This optimal DS
can be obtained for anharmonic barriers using a perturbative
scheme.43–45 Time-dependent manifolds attached to the hyper-
bolic TS trajectory separate the phase space into regions of
selected reactivity. The determination of these manifolds in
driven activated systems11,46–53 would allow one to enhance
or suppress the formation of specific products through tailored
control pulses, and that is the goal of this work.

In reactions with time-dependent energy barriers, a fixed
DS placed close to the barrier top leads to a large number of
recrossings and is therefore ill-suited for describing the reac-
tion dynamics. Recently, Craven et al.54–56 have shown how a
time-dependent DS can be constructed for dissipative systems
over barriers that are moving periodically in time. In an ather-
mal periodically driven system, the TS trajectory is a periodic
orbit that moves close to the barrier top region, following the
motion determined by the external driving field. Furthermore,
the asymptotic reaction rate is given by the difference of the
Floquet exponents of this distinguished trajectory.

In this paper, we extend the previous work reported in
Refs. 54–56 to include the treatment of a reaction occurring in a
Markovian solvent by constructing the exact TS trajectory over
an anharmonic energy barrier that is moving in time. Using
this trajectory, we can identify a strictly recrossing-free DS
for an anharmonic system in the presence of noise. Likewise,
we have succeeded in classifying trajectories as reactive or
nonreactive without the necessity of any numerical simulation
by comparing their initial velocity to the critical value that
they must exceed in order to react. We also demonstrate that
the rate of a chemical reaction in the presence of these external
forces is given by the difference of the characteristic Lyapunov
exponents of the TS trajectory. This is directly analogous to,
but extends, our earlier finding56 that the rates are given by the
differences of the characteristic Floquet exponents of the TS
trajectory in the periodically driven case.

The outline of this paper is as follows: In Sec. II, we
describe the model that will serve as the paradigm for the
present study: the Langevin equation on a time-dependent
anharmonic potential. The method for the calculation of the
TS trajectory and the associated recrossing-free DS for this
system is developed in Sec. III. Expressions for rate con-
stants are determined in Sec. IV in terms of the Lyapunov
exponents of the TS trajectory. The numerical results of these
calculations are reported for various driving forms and ther-
mal strengths in Sec. V. Both of the averaging procedures for
the calculation of reaction rates described earlier are shown to
agree in periodically driven systems, in systems driven by two
incommensurable frequencies, and when the system strongly
interacts with its environment through a stochastic force. The
perturbative calculation of reaction rates also provides good
agreement over a range of parameter values. A key finding
is that all of these methods also support the conjecture that
the rates are determined by the stability of the TS trajectory

as quantified through the difference of the Lyapunov
exponents.

II. DESCRIPTION OF THE MODEL

The activated dynamics of a collective reaction coordinate
on a time-varying energy landscape can be described by a
Langevin equation57,58

ẍ(t) = −
∂U(x, t)
∂x

− γẋ +
√

2σξα(t), (1)

where x(t) is the mass-scaled position coordinate, γ is the fric-
tion, ξα(t) is the fluctuating force exerted by the environment,
and U(x, t) is a time-dependent potential barrier. As in previ-
ous work, the driving is induced by a horizontal movement of
the barrier at the instantaneous mass-scaled position X(t). For
simplicity, we retain the symmetry of the barrier and introduce
anharmonicity through a quartic term. The potential is taken
to be

U(x, t) = −
ω2

b

2
[x − X(t)]2 −

ε

4
[x − X(t)]4 (2)

where ωb is the inverse barrier frequency and ε represents the
anharmonicity. Except where noted, we consider sinusoidal
driving through

X(t) = a sin(Ω t + ϕ) (3)

such that the barrier motion is periodic in time.
The strength of the thermal noise in the Langevin

equation (1) is varied through the parameter σ. In equilib-
rium at temperature T, it is related to the friction by the
fluctuation-dissipation theorem,

σ = γ kBT . (4)

In some cases, detailed below, it is convenient to relax this
restriction and regard σ as an independent parameter. We
consider only Markovian solvent-solute interactions, although
history-dependent effects can be included.45,59,60 The noise is
therefore white (uncorrelated in time) such that〈

ξα(t)ξα(t ′)
〉
α = δ(t − t ′) (5)

and
〈ξα(t)〉α = 0, (6)

where 〈. . .〉α denotes an average over the realizations α of the
noise.

The Langevin equation (1) is a second-order differential
equation that can be rewritten as a system of two first-order
differential equations. It takes the form

ẋ = v , (7a)

v̇ = −γv + ω2
b[x − X(t)] + ε[x − X(t)]3 +

√
2σξα(t), (7b)

where we have specified the potential through Eq. (2). Exam-
ple trajectories evolved through Eq. (7) are shown in Fig. 1
for a dissipative environment with (σ = 3) and without (σ = 0)
noise. Dimensionless units, obtained by setting a = 1 and
ωb = 1, are employed without loss of generality. Through-
out the paper, the temperature of the thermal bath is taken as
kBT = 1, and the initial phase of the periodic driving is ϕ= 0.
In the noiseless case, the TS trajectory, starting at x‡(0)= 0,
is a periodic orbit with the period of the driving as seen in
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FIG. 1. Time evolution of the position of an ensemble of 250 trajectories for a
noiseless system withσ = 0 (top) and for a noisy system withσ = 3 (bottom).
Each trajectory is identified along a color spectrum from blue (small) to red
(large) according to the difference in the initial velocity |v(0) − V‡ | with
respect to the critical velocity V‡ that separates reactive from nonreactive
trajectories (see Sec. III). The initial velocities are sampled from a uniform
distribution on the interval

[
V‡ − 1, V‡ + 1

]
. The position coordinate of the

transition state trajectory x‡(t), given by Eq. (13), is highlighted in white. The
system parameters are γ = 3, Ω = 3, and ε = 2.

the top panel of Fig. 1. In the noisy case, the position at time
0 and evolution of the TS trajectory depend on the past and
future driving of the system. For the particular noise sequence
randomly selected in creating the bottom panel of Fig. 1, the
position x‡(0) of the TS trajectory at time 0 is found to be near
1.3.

III. THE TRANSITION STATE TRAJECTORY

We first consider the harmonic limit of Eq. (7) for a sta-
tionary barrier, a dissipative environment, and no noise. The
last of these conditions effectively eliminates the temperature,
and hence the system can be called athermal. The solution of
the resulting autonomous EoM can be obtained by changing
to the diagonal coordinates defined by

u =
v − λsx
λu − λs

, s =
−v + λux
λu − λs

, (8)

with eigenvalues

λs,u = −
1
2

(
γ ±

√
γ2 + 4ω2

b

)
. (9)

The inverse transformation is given by

x = u + s, v = λuu + λss. (10)

In the coordinate system defined by u and s, Eq. (7) transforms
into

u̇ = λuu +
f (x, t)
λu − λs

, ṡ = λss −
f (x, t)
λu − λs

, (11)

where

f (x, t) = −ω2
bX(t) + ε[x − X(t)]3 +

√
2σξα(t). (12)

Equation (11) has a unique solution u‡ and s‡ that remains
bounded as t → ±∞. This solution is called the TS trajectory.

In the original coordinates (x and v), the TS trajectory
satisfies the integral equations

x‡(t) =
1

λu − λs
(S[λu, f ; t] − S[λs, f ; t]), (13)

v‡(t) =
1

λu − λs
(λuS[λu, f ; t] − λsS[λs, f ; t]), (14)

where f is given by Eq. (12), and S denotes the S-functional61

defined as

S[λ, g; t] =




−

∫ ∞
t

g(τ) exp(λ(t − τ)) dτ: Re λ > 0,

+
∫ t

−∞

g(τ) exp(λ(t − τ)) dτ: Re λ < 0.
(15)

The bounded TS trajectory can be obtained directly from these
functionals as they suppress the exponential contribution of the
solution of the EoM, returning only the part that remains in the
vicinity of the barrier top for all times.

In the harmonic limit (ε = 0), the TS trajectory of Eq. (13)
can be separated into two parts,

x‡(t) = x‡(0)(t) = x‡(0)
α (t) + x‡(0)

T (t), (16)

where x‡(0)
α is a stochastic term that depends on the noise,

x‡(0)
α (t) =

√
2σ

λu − λs
(S[λu, ξα; t] − S[λs, ξα; t]) , (17)

and x‡(0)
T (t) is the deterministic and periodic part54–56 that

depends on the external periodic driving as

x‡(0)
T (t) = A0 sin(Ω t + ϕ) + B0 cos(Ω t + ϕ), (18)

with

A0 =
aω2

b (ω2
b +Ω2)

(γΩ)2 + (Ω2 + ω2
b)2

, B0 =
a γΩω2

b

(γΩ)2 + (Ω2 + ω2
b)

2
.

(19)
In the anharmonic setting (ε > 0), the TS trajectory x‡(t)

appears in the argument of the S-functionals on the right
hand side of Eqs. (13) and (14). As a consequence, these rela-
tions do not give an explicit expression for the TS trajectory.
Two different methods have been developed in order to obtain
the TS trajectory in this case. The first method is based on
perturbation theory (PT). It is described in Sec. III A. The
second, presented in Sec. III B, is based on a numerical itera-
tion of Eqs. (13) and (14) and yields the numerically exact TS
trajectory.

A. Perturbative calculation of the transition
state trajectory

The perturbative calculation of the TS trajectory starts
by expanding it in powers of ε , the perturbative parameter
that accounts for the anharmonic strength in the potential [cf.
Eq. (2)], as

x‡(t) = x‡(0)(t) + ε x‡(1)(t) + ε2x‡(2)(t) + ε3x‡(3)(t) + . . . , (20)

where x‡(0)(t) is given by Eq. (16). The TS trajectory is calcu-
lated order-by-order in ε , starting with the lowest order term
and continuing up to the desired order. As usual, this procedure
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is accomplished by matching the terms in the EoM that have
the same order in ε . In the case of a noiseless system (σ = 0),
the lowest order correction to the harmonic TS trajectory (16)
is given by

x‡(1)(t) = A11 sin(Ω t + ϕ) + B11 cos(Ω t + ϕ)

+ A13 sin(3Ω t + ϕ) + B13 cos(3Ω t + ϕ),
(21)

with the coefficients

A11 =
3a3Ω4b[(Ω2 + ω2

b)2 + γ2(Ω2 + 2ω2
b)]

4[(γΩ)2 + (Ω2 + ω2
b)2]3

,

B11 =
3a3γΩ3[(γΩ)2 +Ω4 − ω4

b]

4[(γΩ)2 + (Ω2 + ω2
b)2]3

,

A13 =
a3Ω4(9Ω4b3 + 2Ω2b2(5γ2 + 14Ω2)ω2

b − 6Ω2(γ2 − 5Ω2) bω4
b − 6(γ4 + 3γ2Ω2 − 2Ω4)ω6

b + (−3γ2 +Ω2)ω8
b)

(4(γ2Ω2 + (Ω2 + ω2
b)2)3(9γ2Ω2 + (9Ω2 + ω2

b)2))
,

B13 =
a3γΩ3(−3Ω4b3 + 18Ω4b2ω2

b + 12Ω2b(γ2 + 4Ω2)ω4
b + 6Ω2(γ2 + 5Ω2)ω6

b − (γ2 − 3Ω2)ω8
b)

4(γ2Ω2 + (Ω2 + ω2
b)2)3(9γ2Ω2 + (9Ω2 + ω2

b)2)
,

and b= γ2 + Ω2. The explicit expression for the sec-
ond order correction term x‡(2)(t) is contained in the
Mathematica notebook that is provided as supplementary
material.

The top panel of Fig. 2 compares the time evolution of
the TS trajectory for a system without noise (σ = 0) computed
using PT and the method reported in Sec. III B. The agree-
ment between the PT at order 3 and the numerical results is
quite remarkable in view of the large value of the expansion
parameter (ε = 10). Unfortunately, in the presence of noise
(σ > 0), the accuracy of the PT is restricted to much smaller
values of the perturbative parameter. An example of a noisy
TS trajectory is shown in the bottom panel of Fig. 2 for ε = 0.1,
a value where the PT still holds. The reference (exact) TS tra-
jectory has been computed using the method reported below

FIG. 2. Time evolution of the transition state trajectory computed for a noise-
less system with σ = 0 and ε = 10 (top), and a noisy system with σ = 1
and ε = 0.1 (bottom). In both panels, the continuous curves are the results
from the perturbation theory at the order n noted in the legend, and the dashed
curve (black) is the numerically exact transition state trajectory developed in
Sec. III B. The system parameters are γ = 1, Ω = 7, and T = 2π/Ω.

in Sec. III B. The breakdown of PT occurs for smaller val-
ues of the perturbative parameter in the presence of noise.
The noise causes the TS trajectory to deviate much farther
from the barrier top than what is seen in deterministic driv-
ing (at the given parameter values) and leads it to explore
more of the anharmonic regions of the barrier. As a conse-
quence, the higher order perturbative expansion coefficients
x‡(n), which contribute to the TS trajectory with an amplitude
of order εn, are larger in the noisy system. For the noiseless sys-
tem, x‡(n+1) is, in general, one order of magnitude smaller than
x‡(n), while for the noisy case it can even be larger than x‡(n).
Of course the magnitude of x‡(n) will shrink for smaller values
of σ, and the range of validity of PT will correspondingly get
wider.

B. Numerically exact computation of the transition
state trajectory

In order to be able to calculate the noisy TS trajectory
for large values of ε , we have also developed another, purely
numerical procedure. For this purpose, one must first com-
pute the harmonic TS trajectory x‡0 ≡ x‡(0) given by the sum
of Eqs. (17) and (18). This TS trajectory can be substituted
into the right-hand side of Eq. (13) to obtain an improved
approximation to x‡ for a non-zero value of ε . For suffi-
ciently small anharmonicity ε , iterating through the order of
the approximation converges to the true TS trajectory.

If ε is too large to achieve convergence directly, we can
add another layer of iteration over the value of ε . One first
computes the TS trajectory for a small value ε = ∆ε � 1. One
then uses x‡

∆ε
as an initial approximation in the same manner in

order to calculate x‡2∆ε , and the iteration is continued up to the
ε value of interest. This algorithm can be used to compute the
TS trajectory for any form of external driving. It is summarized
in pseudocode as follows:

1. procedure TS-TRAJECTORY
2. Compute the harmonic TS trajectory x‡0
3. Choose a small increment ∆ε of ε
4. Set l = 1

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-029730
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-029730
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FIG. 3. Time evolution of the transition state trajectory
x‡(t), given by Eq. (13), for four different values of the
frictionγ, as marked. Each trajectory is colored according
to the respective value of the anharmonic parameter ε . In
all panels, the system parameters are σ = γ and Ω = 3.

5. while l × ∆ε ≤ ε do
5a Compute iteratively x‡l∆ε using Eqs. (13) and (14)

up to the required degree of precision
5b l = l + 1

6. return x‡ε
7. end procedure

If convergence is not achieved in step 6, then the step size
∆ε must be reduced. All our computations have been per-
formed using a step size equal to∆ε = 0.1 and a required degree
of precision in the computation of the transition state trajec-
tory equal to 10�10. For this set of parameters, the number
of iterations needed for convergence was typically less than
100.

Figure 3 shows the time evolution of the TS trajectory
computed for various friction values and noise strengths given
by the fluctuation-dissipation theorem (4). The top left panel
shows the results for γ = 0, which is associated with a Hamil-
tonian system. In this case, large values of the anharmonic
parameter ε generally correlate with large amplitudes. The
value of ε has no influence on the period of the TS trajec-
tory, which is always the same as the external driving field
T = 2π/Ω. When the system is dissipative (γ > 0), the TS tra-
jectory is no longer periodic due to the stochastic interaction
with the environment. Figure 3 also presents the TS trajecto-
ries computed for γ ∈ {0.1, 1, 3}. Notice that the larger the
dissipation, the more violently the TS trajectory oscillates due
to stronger coupling with the environment. The time-averaged
amplitude of the TS trajectory shown in Fig. 4 as a function

FIG. 4. Time-averaged amplitude of the transition state trajectory in a thermal
system as a function of the anharmonic parameter ε for various values of γ
and Ω, as marked. The system parameters are σ = γ.

of the anharmonic parameter ε provides a quantitative and
qualitative estimate of the magnitude of the oscillations. The
amplitude always increases with the friction constant γ and
decreases with increasing frequency Ω. The dependence of
the amplitude on the anharmonic parameter is more difficult
to analyze because it depends strongly on both parameters. For
example, while for γ = 0.1 and Ω= 1, the amplitude increases
linearly with ε , for γ = 3 andΩ= 10, it always decreases in the
considered ε range. In general, however, the time-averaged
amplitude first decreases with ε , and then increases as can
be observed, for example, in the curve for γ = 1 and Ω= 3.
It is notable that the onset of the irregularity of the anhar-
monic trajectories occurs when the friction γ is on the order
of the inverse period of the periodic driving, 1/T = 2π/Ω
≈ 0.5.

The method outlined here can be also applied to the com-
putation of the TS trajectory of a system driven by several
frequencies, even if they are incommensurable. For this pur-
pose, one needs only to substitute the appropriate function
X(t) into Eq. (12). The two top panels of Fig. 5 show the time
evolution of the aperiodic pulse

X(t) = 0.5 sin(Ω1t) + 0.5 sin(
√

2t), (22)

for Ω1 = 1 (left) and Ω1 = 7 (right). The TS trajectories asso-
ciated with these two pulses appear in the two bottom panels.
As for the noiseless system shown in Fig. 3, the oscillation
amplitude of the TS trajectory increases with the anharmonic
parameter ε . The TS trajectory is the only trajectory that
remains close to the barrier top for all times and never falls
down to the reactant or the product regions (cf. Figs. 3 and 5).
The time evolution in Fig. 1 of a swarm of trajectories for a
system in athermal (top) and thermal (bottom) environments
exhibits this effect. The TS trajectory, shown in white, is the
only solution of the EoM that remains close to the barrier top.
All other trajectories fall on one of the sides of the DS after
a certain time. Specifically, the trajectories that have an initial
velocity v(0) larger than the critical velocity, v‡(0) = V‡, fall
into the product well defined by x > 0, while the trajectories
with a velocity v(0) < V‡ fall into the reactant well defined by
x < 0. The trajectories with an initial velocity v(0) close to V‡

take longer to decay into the reactant of product states as they
remain close to the TS trajectory for long times (Fig. 6).
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FIG. 5. Time evolution of a system with quasiperiodic
driving. (Top) Quasiperiodic pulse [as in Eq. (22)] for
Ω1 = 1 (left) andΩ1 = 7 (right). (Bottom) The transition
state trajectory x‡(t), given by Eq. (13). The coloring for
the different anharmonic couplings, ε , is the same as in
Fig. 3. Parameters are γ = 1 and σ = 0.

FIG. 6. Time evolution of an ensemble of 250 trajec-
tories for γ = 0.1 (top; left) and γ = 3 (top; right). Each
trajectory is colored as in Fig. 1. White curves indicate
the locations of three dividing surfaces: the TS trajectory
(thick), the instantaneous barrier top (dashed-dotted),
and a static surface x = 0 (thin). Shown below are the
respective reactant populations PR for each correspond-
ing choice of the dividing surface, as computed from
105 trajectories. In all panels, the system parameters are
σ = γ, Ω = 7, and ε = 1.

IV. RATE THEORY
A. Fundamentals

The rate constant k of a chemical reaction is a mea-
sure of the speed at which reactants (R) are transformed into
products (P). On complex energy landscapes, the calculation
of a rate constant can be computationally very demanding
as it usually requires the propagation of a very large num-
ber of trajectories to get statistically significant results. For
this purpose, one usually takes initial conditions in the reac-
tant well, with some distribution in the position and velocity,
and solves the EoM of the system while following the sur-
vival probability of each trajectory. In equilibrated thermal
systems, the velocity distribution p(v) takes the Boltzmann
form

pB(v) =
1

√
2πkBT

e−v
2/2kBT . (23)

In the calculations presented below, we prepare the system with
this distribution in order to model a system that is initially at
thermal equilibrium. As a reference for modeling nonequilib-
rium states, we will also use a uniform distribution U centered
on the stable manifold of the TS trajectory.

A trajectory is reactive if it crosses the barrier and remains
in the product region, and it is nonreactive otherwise. The

population of the product state at time t is

PP(t) =
∫ ∞
−∞

px(x, t)Θ[x(t) − x‡(t)] dx, (24)

where x‡ is the position of the time-dependent DS that is
attached to the TS trajectory (see Sec. III), px(x, t) is the
distribution of x at time t, and Θ(x) is the Heaviside step
function,

Θ(x) =

{
1, if x > 0
0, if x ≤ 0

. (25)

It has previously been demonstrated that given some
initial position x = x0, reactive trajectories at this position
are those that have an initial velocity that exceeds a criti-
cal value.42–44,54–56 This critical velocity V‡ is defined by the
intersection of the stable manifold with the line x = x0 of the
trajectories’ initial positions. Reactive trajectories have an ini-
tial velocity v(0) = v0 ≥ V‡, while nonreactive trajectories are
those defined by v0 < V‡. Consequently, in a rate calculation,
one only has to account for those trajectories with v0 ≥ V‡.
Thus given a state prepared with initial distribution in position
δ(x− x0), the asymptotic (t → ∞) population for any bounded
distribution is

PP(∞) =
∫ ∞

V‡
p(v)dv . (26)

For a reaction with one reactant state and one product state, the
corresponding probabilities are related by PR(∞) = 1−PP(∞).
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The rate of a reaction can be obtained from the decay of the
population. In transient times, fluctuations due to the barrier
motion and the thermal driving56 manifest as nonstatistical
effects in the decay rate.62–64 However, if a rate exists, at
long times this decay will settle to a constant value that is
independent of the initial distribution.62

B. Rate constants from Lyapunov exponents

A computation of rate constants based on the numeri-
cal simulation of a large number of reactive trajectories is
very time consuming. However, the correct identification of
the geometrical structures that determine the dynamics of the
reaction in the vicinity of the barrier top provides an alterna-
tive approach for this task that circumvents this problem: the
stability of these guiding phase space objects65–70 has been
shown to determine the rate of state transitions.55,56,71

The asymptotic decay rate is determined by those trajecto-
ries close to the stable manifold, whose dynamics are described
by the linear equations of motion, and the corresponding
stability matrix M(t) as(

∆x(t)
∆v(t)

)
=M(t)

(
∆x0

∆v0

)
, (27)

where ∆x = x − x‡ and ∆v = v = v‡ are the relative coordi-
nates. In what follows, it is also useful to define the relative
coordinates ∆u = u−u‡ and ∆s = s− s‡ in the diagonal space.
The stability matrix accounts for the linearized motion about
the TS trajectory and fulfills

M(0) = I, Ṁ = J(t)M, (28)

where J is the Jacobian matrix

J(t) =

(
0 1

ω2
b + 3ε[x‡ − X(t)]2 −γ

)
(29)

that satisfies (
∆ẋ
∆v̇

)
= J(t)

(
∆x
∆v

)
. (30)

For the case of a periodically driven, noiseless system with
period T, the stability matrix is a monodromy matrix. In this
case, the eigenvalues of M(T ) are the Floquet multipliers mu,s.
In systems driven only by periodic forces, the rate of reaction
is given by the difference between the corresponding Floquet
exponents, µu,s = log |mu,s |/T , of the TS trajectory.54–56

A conjecture, supported by the observed persistence of
this rate theory over complex periodic driving forms,56 is that
the previous findings can be generalized to thermally driven
(noisy) systems. In the case of aperiodic driving, the stability
matrix M(t) is no longer periodic and it must be computed for
very long times. The corresponding eigenvalues can then be
used to calculate the Lyapunov exponents of the TS trajectory,

µu,s = lim
t→∞

1
t

log |mu,s(t)|, (31)

and their difference, we posit, once again gives the reac-
tion rate. For noisy systems, we will assume that µs < 0 < µu

as in the harmonic limit of the noiseless system, where 0
< µu = λu < 1 and µs = λs < 0. Notice that this condition could
in principle break down if the anharmonicities become too
strong. However, this case never occurred in our simulations;

we always found that both Lyapunov exponents were real and
of opposite sign. In order to reduce the numerical errors, we
compute the stable Lyapunov exponent, µs, by making a back-
ward time evolution changing t to �t in Eq. (31), as µs is then
associated with an unstable direction in the phase space (see
below).

The eigenvectors vu(t) and vs(t) of the M(t) matrix define
two very particular directions to study the dynamics in the
vicinity of the TS trajectory: A trajectory displaced in the direc-
tion of the unstable vector vu will typically separate from the
TS trajectory with an expansion factor eµut . Thus, this eigen-
vector defines an unstable direction in the phase space. On
the other hand, a trajectory with an initial condition placed at
the stable vector, vs, will typically approach the TS trajectory
with a contraction factor eµst . Consequently, it defines a stable
direction in the phase space. The vectors vu and vs determine
a new set of coordinates, ∆u and ∆s, that provide the natural
framework to study the dynamics close to the TS trajectory.

Let us now consider the decay of a set of trajectories,
each with initial position x(0) = x0. In the long time limit,
the reactive flux of this set, and hence the reaction rate, is
determined by the trajectories with initial velocities close to the
stable manifold. We further assume that the distance from this
manifold is small enough that the linear approximation given
by Eq. (29) satisfactorily describes the dynamics close to the
TS trajectory. In analogy to the case of periodic driving,54–56

we thus conjecture that the number of trajectories that cross
the moving DS is proportional to e(µu−µs)t . Thus, the reactive
flux, which is the time derivative of the population decay, is
proportional to the same factor. It follows from this that the
reaction rate is given by the difference in the unstable and
stable Lyapunov exponents of the TS trajectory,

kf = µu − µs. (32)

In Sec. V, we explore the validity of Eq. (32) by comparing the
rates given by stability analysis with those obtained directly
using numerical simulation.

V. RESULTS
A. Averages of the reactive population
for rate calculations

To measure the reaction rates kf of the system modeled
by Eq. (7), the survival probability of a large number (N
= 108 to 109) of trajectories with initial positions xi(0) in the
reactant region was followed as a function of time. The reactant
population is calculated as

PR(t) = 1 −
1
N

N∑
i=1

Θ[xi(t) − x‡(t)], (33)

where the Heaviside function Θ, defined in Eq. (25), distin-
guishes between reactive and nonreactive trajectories using a
DS attached to the TS trajectory calculated in Sec. III. The
reaction rate is obtained from the decay of PR(t). After the
initial transient, the decay of the scaled logarithmic popula-
tion − ln [PR(t) − PR(∞)] is approximately linear in time. The
first-order reaction rate, as calculated from numerical simula-
tion, is then given by the slope of this line. In all cases, we
have found this DS free of recrossings.
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The inclusion of noise gives rise to fluctuations in the
population decay over time-intervals where our computa-
tional resources allowed sampling. These fluctuations depend
strongly on the realization of the driving and noise, giving rise
to a high degree of variation in the measured rates. Thus, an
averaging method was implemented to obtain the overall reac-
tion rate: the decay of a statistical sampling of populations is
first obtained, rates are determined at different initial times,
and all of the rates are averaged to obtain an overall rate of
decay. In more detail, the decay of the population at t = t0 is
first followed to obtain the rate k(t0), the decay of the popula-
tion beginning at t = t1 > t0 is then followed to obtain k(t1),
and so forth at each ti. The initial times ti are evenly spaced
with ∆t = ti − tj = 5 and chosen sufficiently far apart such
that the transient section of the population decay leading to
the rate k(ti) is complete before ti+1. Consequently, the differ-
ent values k(ti) represent the influence of independent noise
sequences. The overall rate we report is the average of all these
rates,

kf = 〈k(ti)〉, (34)

which is taken over the initial times. The total number N of tra-
jectories is equally distributed over these time points. At each
time point ti, the initial position of each trajectory was taken
the same distance from the TS trajectory, i.e., x0 = x‡(ti)−0.1,
with a Boltzmann distribution in velocity, although this rate
is independent of the chosen distribution62 as we previously
confirmed.55

Random fluctuations in the long-time decay of PR(t) were
found to be significant in the presence of strong noise. When
the population decay becomes noisy (reaching the asymptotic
value) before multiple fluctuations can be averaged over, the
rate calculation is taken over the time period after the transient
decay but before the onset of the breakdown of the sampled
logarithmic population. In this intermediate region, exponen-
tial behavior is observed as seen in the typical population
decays of Fig. 7. The decay rates can be extracted from the

FIG. 7. Time dependence of the scaled logarithm of the reactant population
for a stationary barrier with thermal activation (γ = σ = 1). The solid curves
are the results measured from simulation. The dashed lines are the linear fits to
the interval of asymptotic exponential decay in the data. The selected points,
after averaging over initial times, resulted in least-square fits with typical
coefficients of determination R2 > 0.996 (and often R2 > 0.999 for small
values of ε and γ). Each curve corresponds to the population decay measured
at a different time point along the transition state trajectory. Typical population
decays are shown for (I) thermal fluctuations that are averaged over throughout
the decay, (II) a long initial transient that is excluded from the rate calculation,
and (III) a strongly linear decay with few fluctuations. Each data set has been
vertically shifted for visual clarity.

intermediate time interval that excludes the initial transients
and the long-time numerically unconverged behavior.

In the regime of strong noise and low frequency driving,
the calculated rate is highly dependent on the choice of the time
window used to sample the decay. Although not shown, we
confirmed that starting each trajectory with the same potential
energy, as opposed to the same distance from the TS trajectory,
did not significantly alter the measured rate. While this change
in initial conditions drastically altered the shape of the transient
section, the asymptotic region still exhibited approximately
linear behavior. Beginning all trajectories with the same fixed
initial position would also yield the same asymptotic decay
rate, but would require the integration of significantly more
trajectories to achieve similar numerical accuracy because the
number of reactive trajectories decreases as the initial position
is moved further from the barrier top region.

B. Quasiperiodic driving

As postulated earlier, the difference in the unstable and
stable Lyapunov exponents of the TS trajectory gives the rate
of barrier crossing. We test this conjecture here on a system
in an athermal environment under quasiperiodic driving as it
represents an important limit of the most general conditions.
In a thermal environment, violent fluctuations can occur due to
the solvent-solute interaction and can thereby drown the effects
of the driving conditions. By removing the solvent fluctuations
while keeping the dissipation, the driving terms still dominate
the dynamics allowing us to confirm that they are properly
accounted for in the rate theory developed in Sec. IV. The rates
obtained for a quasiperiodically driven barrier in a dissipative
environment are shown in Fig. 8. The reaction rate increases
with the anharmonic strength ε . This characteristic behavior is
independent of the driving form and environment, arising from
the geometry of the energy surface as shown in the following
examples. Across all irrational frequencies Ω1 studied here,
the numerical results are in agreement with the rates obtained
from the Lyapunov exponents of the TS trajectory. This finding

FIG. 8. Reaction rate kf for the quasiperiodic driving described in Fig. 5 for
Ω1 in (22), as a function of the anharmonic parameter ε for various values
of the rational driving frequency Ω1. The curves are the difference in the
Lyapunov exponents of the transition state trajectory. The markers represent
the average numerical rates calculated by following the lifetimes of 108 total
trajectories distributed over 10 initial times. The system parameters are γ = 1
and σ = 0.
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FIG. 9. As in Fig. 8, the reaction rates kf computed numerically (square mark-
ers) are compared to the differences in the Lyapunov exponents of the transition
state trajectory (solid curves). The results here are computed for the stationary
barrier in a thermal environment as a function of the anharmonic parameter
ε for γ ∈ {0.1, 1, 3} and σ = γ. The circular markers denote the average
numerical rates calculated by the following the lifetimes of approximately
5 × 109 total trajectories distributed over 45–50 initial times.

supports our assertion that the stability of the guiding phase
space objects directly dictates the reaction rate.

C. Stationary barrier with thermal activation

Decay rates in a thermal system with a stationary bar-
rier obtained directly from numerical integration of popula-
tion decays are compared in Fig. 9 to those obtained from
the Lyapunov exponents of the TS trajectory. There is good
agreement across all parameter values. However, we observe
that the difference in the Lyapunov exponents systematically
overestimates the rates, if only slightly. With the inclusion
of thermal driving, the rates calculated at each time point
ti are highly dependent on the realization of the noise. To
verify that the average (34) includes a representative sam-
ple of noise sequences, the number of time points used for
sampling was increased from 10 to about 50 with 107 trajec-
tories sampled at each ti with spacing between time points
∆t = ti − tj = 1. For all noise sequences, the same time win-
dow was used to extract the decay rate. This increased sam-
pling resulted in only marginally better agreement with the
rates calculated from stability analysis for γ = 0.1 and γ = 1,
implying that the numerical rates calculated using 10 time
points have converged to a statistical accuracy relevant for
at least qualitative comparison; in fact, the rates obtained from

stability analysis are quantitatively close to the numerical
data. In the strong-noise (γ = 3) system, increasing the num-
ber of sampling points resulted in decreased variance in the
numerical rates. This agrees with the previous observation that
convergence of the rates requires sampling over many noise
sequences.

D. Periodic driving in a thermal environment

In a thermal system where the motion of the barrier is
periodic, the deterministic driving introduces nonequilibrium
fluctuations that are not counteracted through dissipation, as
is the case for the stochastic forces. However, the general
trends for the reaction rates of this system remain the same
(see Fig. 10). With increasing driving frequency or barrier
anharmonicity, the reaction rate increases. Across all values
of thermal strength studied, for high frequency driving the
rates given by stability analysis are in excellent agreement
with the numerically measured rates. This agreement at high
frequencies has also been observed in a system driven only
by periodic forces.55,56 When the barrier is driven at a fre-
quency close to the resonant frequency, the difference in the
Lyapunov exponents underestimates the rate for Ω= 1 and
overestimates the rate for Ω= 3. This turnover corresponds to
an increase in amplitude for the TS trajectory by a factor ∼2,
as illustrated in Fig. 4. We conjecture that this amplitude effect
results in more reactant population being pushed away from the
barrier-top region over consecutive periods of oscillation. This
gives rise to fluctuations in the decay, and correspondingly, the
observed deviations from linearity in the logarithmic popula-
tion. Thus, the interplay between friction γ, thermal strength
σ, and driving frequency Ω dictates the reaction rate through
nonlinear relations. Based on the generality of our methodol-
ogy, we expect the same trends to be observed in other reactions
on energy surfaces with different anharmonic or more global
geometries.

E. Results from perturbation theory

The PT rates computed for a noiseless and a noisy sys-
tem subjected to periodic driving are compared in Fig. 11
to the difference between the Floquet exponents of the TS
trajectory (an unstable periodic orbit) (top) and to the differ-
ence between the Lyapunov exponents of the TS trajectory
(bottom), respectively. The rate constants extracted from the
TS trajectory computed using PT of order n = 3 are in good
agreement with the numerically exact result over a wide range
of anharmonic couplings (shown in Fig. 11 for values up

FIG. 10. Reaction rate kf in a periodi-
cally driven thermal system as a function
of the anharmonic parameter ε for three
different values of the frictionγ and var-
ious driving frequencies Ω, as marked.
The solid curves are the difference in
the Lyapunov exponents. The markers
represent the numerical rates calculated
from the time evolution of the product
population for a set of 108 trajectories
equally distributed over 10 time points.
The system parameters in all panels are
σ = γ.
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FIG. 11. Reaction rate kf as a function of the anharmonic parameter ε for
perturbation theory of order n ∈ {0, 1, 2, 3} in noiseless (top; σ = 0) and
noisy (bottom; σ = 1) systems. In both panels, the continuous curves are the
perturbative results while the dashed curve (black) is the result obtained using
the numerically exact transition state trajectory developed in Sec. III B. The
system parameters are γ = 1 and Ω = 7.

to ε = 10). In the case of a noisy system, the validity of PT
is limited to much smaller anharmonicities. As should be
expected, the larger the order in the PT expansion, the better
the agreement of the rates to the numerical results. Although
not shown, we have confirmed that this trend continues with
the inclusion of higher-order terms.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a new approach for
computing the reaction rate of a thermally activated and exter-
nally driven chemical reaction across an anharmonic poten-
tial energy surface. It complements alternative approaches by
other groups, cited above, which rely more directly on tra-
jectories through the dividing surface, and extends our recent
work54–56 which relied on periodic driving. Thus, the current
work is an advance in two major respects: First, an exact DS
is defined that is never recrossed by any reactive trajectory.
This recrossing-free DS allows one to identify all trajecto-
ries that cross the DS as reactive, as has been the goal of
TST from its inception. It is interesting to note that this opti-
mal DS is time-dependent because it is attached to the TS
trajectory, which is the only trajectory that remains in the
vicinity of the barrier top for all times. Second, we have also
demonstrated that the reaction rate is given by the difference
between the Lyapunov exponents of the TS trajectory. Third,
we have shown that this methodology can be applied to sys-
tems driven by pulses with several frequencies, even if they
are incommensurable. Finally, we are currently extending the
methodology reported here to laser-driven systems in the high-
dimensional phase space and also to systems that interact with
the environment through colored noise. Extension and test-
ing of our theory on chemical reactions in which the phase
space density in the transition state region does not vanish
due to the presence of metastable energy wells on the under-
lying energy surface is another possible direction for future
work.

SUPPLEMENTARY MATERIAL

See supplementary material for the equations described
in this work to obtain the TS trajectory which have been coded
in Mathematica. A text file in the Mathematica format (.nb)
and a printout in a portable document format (.pdf) have been
made available.
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