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ABSTRACT

Predicting the charged particle transport properties of warm dense matter/hot dense plasma mixtures is a challenge for analytical models.
High accuracy ab initio methods are more computationally expensive, but can provide critical insight by explicitly simulating mixtures. In
this work, we investigate the transport properties and optical response of warm dense carbon–hydrogen mixtures at varying concentrations
under either conserved electronic pressure or mass density at a constant temperature. We compare options for mixing the calculated pure
species properties to estimate the results of the mixtures. We find that a combination of the Drude model with the Matthiessen’s rule works
well for DC electron transport and low-frequency optical response. This breaks down at higher frequencies, where a volumetric mix of pure-
species AC conductivities works better.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0198003

I. INTRODUCTION

Understanding the material properties of matter in extreme con-
ditions is a critical task for predicting the behavior of complex high
energy density physics experiments, e.g., inertial confinement fusion
(ICF),1–3 as well as astrophysical systems, e.g., the dependence of mag-
netic fields on planetary composition.4 Numerous models exist to pre-
dict these material properties, from kinetic plasma models to average
atom density functional theory.5–9 However, in the warm dense matter
and hot dense plasma regimes, it remains difficult to develop accurate
models.10,11 Transport properties of electrons and ions in multi-
species mixtures are particularly difficult to accurately predict.12

Ab initio calculations, through Kohn–Sham density functional
theory, (DFT) of transport from quantum molecular dynamics and the
Kubo–Greenwood approach have become a gold standard for matter
in extreme conditions.13–21 However, the computational cost is large.
Generating a table with a wide range of densities and temperatures at a
variety of concentrations may be prohibitively expensive. Spherically
symmetric average-atom models for DFT are much more efficient but
can be less accurate and are not directly applicable to mixtures.22–24

Mixing rules are used to estimate the properties of a mixture
based on knowledge of the pure component systems. They provide a
route to calculate transport properties of mixtures from either rapidly

generated average atom data or existing or more readily calculated
single-species atomistic data. However for optical properties there has
been a rather scant testing of the mixing rules. As a testbed, we investi-
gate warm dense carbon (C) hydrogen (H) mixtures at the atomistic
level using ab initio (many-atom) DFT and compare it to mixing rule
estimations done at the same level of theory. Warm dense CH mix-
tures are of critical importance to ICF due to the use of high-density
carbon or styrene as an ablator material and deuterium/tritium (DT)
as fuel.1,2,25 Thermal conductivities of warm dense C–H and Beryllium
have recently been measured at the OMEGA laser facility.11 In addi-
tion, recently-determined C–H equations of state for the giant icy
planets,26 Uranus and Neptune, may help explain the puzzling differ-
ences in their luminosities giving rise to exothermic and endothermic
between the similar planetary structures. Here, we consider isobaric,
representative of a pressure–temperature equilibrated interface, and
isodensity mixtures.

The rest of the article is organized as follows: Sec. II contains the
details of theoretical formalism that is used to predict various transport
and optical properties of WDMmixtures with a focus on CHmixtures.
In Sec. II B, we compare the results of several mixing rules to thermal
and electrical conductivity of CH mixtures using pure species values.
Section III contains the details of the computational methods,
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including the quantum molecular dynamics simulations, that are used
to calculate properties of WDM mixtures. The results of the applied
workflow are shown in Sec. IV. Conclusions and future outlook are
given in Sec. V.

II. FORMALISM
A. Quantum molecular dynamics

We consider a binary mixture of atoms of type A and B at a con-
stant temperature T with a fixed total number of atoms NAB ¼ NA þNB

at concentrations xA ¼ NA=NAB and xB ¼ NB=NAB with a volume VAB

and total number density nAB ¼ NAB=VAB. Our study examines the
trends in static, dynamical, optical, and thermal properties over a range
of concentrations from a pure A to a pure B system within two environ-
mental conventions: (1) isodensity with the volume varied to produce
the same total mass density for each choice of concentrations ½xA; xB�,
including the pure cases ½xA ¼ 1; xB ¼ 0� and ½xA ¼ 0; xB ¼ 1� and (2)
isobaric with the volume varied to produce the same electronic pressure
Pe for each choice of concentrations ½xA; xB�.

Since the basic formulation and implementation of the molecular
dynamics and optical properties simulations appear in a set of earlier
papers,13,27–31 we shall present only a brief overview of the procedures.
We have performed quantum molecular dynamics (QMD) simulations
employing the Vienna ab initio Simulation Package (VASP)32 and the
Stochastic and Hybrid Representation of Electronic Structure by Density
functional theory (SHRED)33 codes within the isokinetic ensemble (con-
stant NVT). The electrons are treated quantum mechanically through
plane wave, finite-temperature-density-functional theory (FTDFT) cal-
culations within the generalized gradient approximation (GGA) for the
Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional having
the ion–electron interaction represented by projector augmented wave
(PAW) pseudopotentials.34 The nuclei evolve classically according to a
combined force provided by the ions and electronic density. The system
was assumed to be in local thermodynamical equilibrium (LTE) with
equal electron ðTeÞ and ion ðTiÞ temperatures ðTe ¼ TiÞ, in which the
former was fixed within the FTDFT and the latter kept constant through
simple velocity or force rescaling.

At each time step t for a periodically replicated cell of volume (V)
containing Ne active electrons and Ni ions at fixed spatial positions
RqðtÞ, we first perform a FTDFT calculation within the Kohn–Sham
(KS) construction to determine a set of electronic state functions
½Wi;kðtÞji ¼ 1; nb] for each k-point k as follows:

HKSWi;kðtÞ ¼ �i;kWi;kðtÞ; (1)

where �i;k is the eigenenergy. A velocity-Verlet algorithm advances the
ions, based on the force from the ions and electronic density, to obtain
a new set of positions and velocities. Repeating these two steps propa-
gates the system in time yielding a trajectory consisting of nt sets of
positions and velocities [RqðtÞ;VqðtÞ] of the ions and a collection of
state functions [Wi;kðtÞ] for the electrons. These trajectories produce a
consistent set of static, dynamical, and optical properties. All molecular
dynamics (MD) simulations employed only C (k¼ 0) point sampling
of the Brillouin Zone in a cubic cell of length L ðV ¼ L3Þ.

1. Static and transport properties

The total pressure (P) of the system consists of the sum of the
electronic pressure Pe, computed via the forces from the DFT

calculation, and the ideal gas pressure of the ions at number density
n ¼ Ni=V ,

P ¼ Pe þ nkBT: (2)

The electronic pressure is an average over the pressures at different
times along the MD trajectory once the system has equilibrated.

Diffusion of warm dense matter mixtures has been examined
using effective potential models,35 classical MD and one-component
plasma models,36,37 and quantum molecular dynamics and pseudo-ion
in jelliummodels.38–42 For a detailed comparison of different modeling
techniques, see the results of the first and second Charged-Particle
Transport Coefficient Code Comparison Workshops.12 Following the
standard prescription,38 the self-diffusion coefficient Ds is computed
from the trajectory by either the mean square displacement (MSD) or
by the velocity autocorrelation (VAC) function,

Ds ¼ 1
6t
hjRiðtÞ � Rið0Þj2i ¼ 1

3

ð1
0
hViðtÞ � Við0Þi dt: (3)

The brackets denote statistical averaging over the trajectories. A similar
formula yields the mutual diffusion DAB between the two species.38

Under warm dense matter conditions, the Darken approximation gen-
erally provides reliable results using only the self-diffusion coefficients:

DAB ¼ xBDA þ xADB: (4)

In other words, only interactions of a particle of a given species and
itself at different times govern the mutual diffusion. From the e-folding
time of the VAC function, we determine a correlation time s. Time
steps separated by s are considered statistically uncorrelated, and sta-
tistical error is estimated from the Zwanzig formula.43

2. Electrical and thermal properties

The basic electrical and thermal properties of the medium derive
from the frequency-dependent Onsager coefficients30,31 given by

LnmðxÞ ¼ 2p
X

X
i;j

FijjDijj2 �i þ �j

2
� h

� �mþn�2

dð�i � �j � xÞ; (5)

where X is the atomic volume, and �i is the energy of the i
th state. We

have assumed an implicit summation over k-points. The summed-
over quantities are the difference between the Fermi–Dirac distribution
at energy levels �i and �j at temperature T,

Fij ¼ ½fFDð�iÞ � fFDð�jÞ�=x; (6)

and the velocity dipole matrix elements

jDijj2 ¼ 1
3

X
a

jhWijrajWjij2; (7)

with a representing the directions x, y, and z, and wi is the wave func-
tion for the state with energy �i given by Eq. (1). For practicality, the d
function in Eq. (5) is approximated by a Gaussian of width DG. The
enthalpy is defined as h ¼ lþ Ts with s, the entropy per particle, and
l, the chemical potential or Fermi energy �F. The zero-frequency val-
ues of the Onsager coefficients determine basic properties such as the
DC conductivity rdc, the thermal conductivity j, the thermopower a,
and the Lorentz factor L according to the following relations:
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rdc ¼ L11ð0Þ; (8)

j ¼ 1
T

L22ð0Þ � L212ð0Þ
L11ð0Þ

" #
; (9)

a ¼ L12ð0Þ
TL11ð0Þ ; (10)

L ¼ e2

k2B

 !
j

Trdc
; (11)

where e is the electric charge, and kB is the Boltzmann constant.
The Onsager coefficients satisfy certain symmetry rules: LnmðxÞ
¼ Lnmð�xÞ and LnmðxÞ ¼ LmnðxÞ. When the Lorentz factor L is a
constant, this relation yields the well-knownWiedemann–Franz law.

The frequency-dependent conductivity L11ðxÞ satisfies a simple
selection rule of the form

S ¼ 2
p
V
Ne

ð1
0
L11ðxÞdx ¼ 1; (12)

which provides a check on the number of states (bands) employed in
the calculation of the optical properties.

Given the behavior of the function Fij in Eq. (5), the principal
contributions to the Onsager coefficients arise from transitions
between occupied and unoccupied eigenstates, requiring the determi-
nation of a much larger number of states (bands) than for the MD
simulation. Fortunately, only between five and ten snapshots along the
trajectory are required to converge the optical properties to within a
few percent. The separation between sequential snapshots though
should exceed the longest correlation time s determined from the
VAC.

We can extract other optical properties from the frequency-
dependent real r1ðxÞ¼ L11ðxÞ and imaginary r2ðxÞ components of
the electrical conductivity. The imaginary part derives directly from a
Cauchy principal value (P) of the integral over the real part,

r2ðxÞ ¼ � 2x
p

P
ð1
0

r1ð�Þ
ð�2 � x2Þ d�: (13)

In terms of the complex conductivity, the components of the
dielectric function �ðxÞ ¼ �1ðxÞ þ i�2ðxÞ are written as

�1ðxÞ ¼ 1� 4p
x

r2ðxÞ; (14)

�2ðxÞ ¼ 4p
x

r1ðxÞ: (15)

Furthermore, the real nðxÞ and imaginary kðxÞ parts of the
index of refraction,

nðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
fj�ðxÞj þ �1ðxÞg

r
; (16)

kðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
fj�ðxÞj � �1ðxÞg

r
; (17)

combine to give the reflectivity rðxÞ and the absorption coefficient
aðxÞ,

rðxÞ ¼ ½1� nðxÞ�2 þ kðxÞ2
½1þ nðxÞ�2 þ kðxÞ2 ; (18)

aðxÞ ¼ 4p
nðxÞ r1ðxÞ: (19)

Finally, the Rosseland mean opacity (RMO) jR is given by

1
jR

¼
ð1
0

B0ð�Þ
að�Þ d�; (20)

where B0ð�Þ is the derivative of the normalized Planck function with
respect to temperature. Since the function B0ð�Þ peaks around 4kBT ,
we expect the computed opacities will be most sensitive to differences
in the absorption coefficient around this energy.

B. Mixing rules

1. Pressure matching (PM) or Amagat

The pressure matching (PM) scheme44,45 considers a composite
sample of two constituents, A and B with particle numbers NA and NB,
respectively, at a given total density nij with concentrations xA and xB
and temperature T. Varying the densities (volumes Vi) of the pure spe-
cies until the following conditions,

VAB ¼ VA þ VB; (21)

PA VA½ � ¼ PB VB½ �; (22)

are satisfied establishes the PM prescription, where Pi is the pressure of
species i at number density ni¼Ni/Vi. The other composite properties
(XAB), such as conductivities, are deduced from the relation

XAB ¼ aAXA nPA
� �þ aBXB nPB

� �
; (23)

where ai � Vi=VAB. The determination of the pressure constraint
Eq. (22) necessitates the independent construction of pressure–
volume tables for the individual species (A, B) over a requisite
range of densities for a particular T. In addition, the single-species
properties require calculation at the matched densities, which may
vary considerably.

This general procedure can be applied considering a constraint of
any material property, e.g., the electronic pressure or the electronic
chemical potential. If the parameter is similarly sensitive to the plasma
environment, then matching will be less sensitive to the choice of the
matched quantity. If other factors play a considerable role, such as the
nuclear mass as is the case when mass density is constrained (Dalton’s
law), then the match can be significantly different.

2. Ionization matching

Rather than a pressure balance, another set of possible mixing
rules focus on the effective ionization within the mixture, such as
the ones proposed in Appendix A of a recent paper by Starrett
et al.46 In this case, the mixing rule for a given composite property
Xij becomes

XAB ¼ aAXA q½ � þ aBXB q½ �: (24)

with ai ¼ Ci=C; Ci ¼ xið�Zp
i Þ2, and C ¼Pi Ci, where an effective

species charge Zp
i within the plasma mixture determines the single-

species mixing coefficient, ai. Here, q is the same mass density for both
the pure and mixed systems, i.e., the isodensity case. Many possibilities
exist for the choice of �Zp

i , some through average atom formulations.46
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C. Equivalence of mixed quantities

Additional flexibility in the mixing rules comes from adjustment
of the composite property, which is mixed. For example, solving

X�1
AB ¼ aAX

�1
A nA½ � þ aBX

�1
B nB½ �; (25)

rather than Eq. (23) for XAB directly. To illustrate, consider the con-
ductivity, rðxÞ and its inverse, the resistivity, RðxÞ. Ideally, the inverse
of the mixed resistivity would be equal to the mixed conductivity, but,
as we will see, this is not the case.

Assuming some effective number of contributing electrons per
atom �Z , we can define the “valence” electron density of the mixture:
�ne ¼ ðxA �ZA þ xB �ZAÞ=VAB. We can define an effective frequency-
dependent scattering rate as cðxÞ ¼ ðrðxÞ=�neÞ�1. Matthiessen’s rule
states that the total scattering rate is the sum of all scattering rates and
is the basis of the ionization matching procedure.46 We will thus also
consider the direct mixing of the effective scattering rates and the
resulting conductivity as follows:

cAB ¼ aAcA nA½ � þ aBcB nB½ �; (26)

rAB ¼ �ne x;VAB½ � � c�1
AB: (27)

The mixing of optical properties can become even more complex.
As all optical properties [Eqs. (13)–(19)] can be computed from the
real part of the frequency-dependent conductivity r1ðxÞ, we may con-
sider whether the derivative property, e.g., the absorption, should be
mixed directly or whether the mixed conductivity should be trans-
formed to the derivative property. Since the relationship between the
optical properties is not linear, the results will differ.

III. COMPUTATION

We focus on a carbon–hydrogen system at T¼ 10 eV and for
the isodensity case qHC ¼ 10 g/cm3 and for the isobaric case
Pe¼ 5580GPa, the value for xH ¼ xC ¼ 0.5. As an example of the iso-
baric, a density of 8 g/cm3 recovers this pressure for xH ¼ 0.75 and
xC ¼ 0.25 with NHC ¼128. We employ ten concentration combina-
tions: xH ¼ 1.0, 0.90, 0.80, 0.75, 0.63, 0.50, 0.37, 0.25, 0.10, 0.0, with
xC ¼ 1� xH. Since some of these combinations involve small num-
bers of atoms for a given species, we examine the convergence of vari-
ous properties as a function of the total number of atoms NHC ¼ 64,
128, 192, 256, and 384. We find for the electronic pressure, diffusion
coefficients, the DC electrical conductivity, and the thermal conductiv-
ity that NHC ¼ 128 gives values within better than 5% when compared
with the NHC ¼ 192 and 256 simulations for most of the concentration
combinations. For example, for the xH ¼ 0.75, xC ¼ 0.25 case, the ther-
mal conductivity j takes the following values: 6600, 7100, 7150, and
7100 (W/m/K) for NHC ¼ 64 (48/16), 128 (96/32), 192 (144/48), and
256 (192/64). An exception is the electron transport properties of pure
hydrogen, and very low concentration (1% and 5%) carbon mixtures.
We thus perform large 1000-atom simulations in these cases using the
SHRED code, which has an efficient orbital and grid parallel imple-
mentation of the Kubo–Greenwood approach. This enables us to
obtain a highly converged calculation with respect to the system sizes
for a particularly sensitive set of CH systems.

For VASP calculations, we apply one- and four-electron “hard”
PAW with a cutoff of 700 eV for hydrogen and carbon, respectively.
The QMD trajectories consist of 2000–5000 time steps of length 0.1 fs.
We generally employ four k� points in the sampling although we

have tested with 14, which makes a change of less than 5% in the vari-
ous properties.47 When simulating the dynamic properties, we include
states with occupations >10–5. The calculation of electronic transport
properties, via the Kubo–Greenwood approach requires two to three
times as many Kohn–Sham states as required to converge the elec-
tronic density. For SHRED calculations, the one- and four-electron
hydrogen and carbon PAW potentials are utilized.48 A long QMD of
�8000 steps is performed with a time step of 0.02 fs. The optical and
transport properties are obtained by calculating the respective values at
equally spaced uncorrelated static configurations from the trajectory,
and then averaging over multiple configurations. We found that in
most cases, averaging over 10 configurations was enough to estimate a
converged value, with the exception of pure H system where we dou-
bled the number of configurations in the average to 20.

IV. RESULTS
A. Density and pressure

The electronic pressure for different mixture ratios in the isoden-
sity case are shown in Fig. 1. As the concentration of carbon is
increased, a sharp decrease in the pressure is observed. This is largely
due to the dramatic change in the volume required to maintain the
constant mass density as hydrogen nuclei are replaced with carbon.

For the pressure matched system, the densities as a function of
mixture ratio are shown in Fig. 2. The densities are taken from fitting
three multi-component QMD calculations at total densities, which are
610% of a guessed density (taken from a Thomas Fermi model), and
then interpolating/extrapolating the results to get the matching den-
sity. For these densities, the electronic pressures are all within 2% of
the target pressure (5580GPa), with most cases being within 1/2%.
The mass density changes by a factor of �3:2 from pure hydrogen to
pure C, in contrast to their atomic mass ratio of �12. The carbon 1s
electrons do not contribute significantly to the pressure in this temper-
ature density regime. Assuming these 1s core carbon electrons are fro-
zen, the change in mass density is readily observed to be roughly
equivalent to the change, which would be required to preserve a con-
stant valence electron number density when changing from pure H to
pure C, �2:98 ¼ 12

1:007 � 14
� �

. We note that this agreement holds under
these conditions and may not generally be true for other densities and
temperatures.

FIG. 1. Multi-component QMD-calculated electronic pressures as a function xC for
isodensity mixtures of density qHC ¼ 10 g/cm3.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 042706 (2024); doi: 10.1063/5.0198003 31, 042706-4

VC Author(s) 2024

 20 M
ay 2024 01:55:24

pubs.aip.org/aip/php


B. Diffusion

The mass diffusion results are shown in Fig. 3. As expected in
both the isobaric and isodensity cases, the carbon self-diffusion is
much less sensitive to the change in concentration than the hydrogen
self-diffusion.40 This is due to the larger mass, which leads to a
Brownian-type temperature dominated diffusion in the low

concentration regime. The hydrogen self-diffusion is more sensitive to
concentration change. Under isobaric conditions in asymmetric mix-
tures, the hydrogen transport crosses over to a Lorentz gas diffusion,
where the hydrogen transport is nearly ballistic in between collisions
with the higher charge species.49 For the isodensity case, the volume
expansion required to maintain mass density dominates; the hydrogen
diffusion increases as total collisions are diminished.

In both cases, the Darken relation given by Eq. (4) gives strong
agreement with the measured mutual diffusion values. In the Darken
approximation, DH and DC are the self-diffusion calculated in the
mixed system. Thus, the Darken relation should not be considered a
“mixing rule.” Rather, it derives explicitly from neglecting inter-species
correlations in the full Maxwell–Stefan mutual diffusion, which non-
trivially extends to higher numbers of species.38,39

C. DC electronic conductivity and thermal conductivity

The direct conduction conductivity r1ðx ¼ 0Þ and thermal con-
ductivity jðx ¼ 0Þ are shown from the mixed “atomistic” simulations
in Figs. 4 and 5, respectively. The top (bottom) panels are the isoden-
sity (isobaric) results. In both cases, the increase in carbon concentra-
tion yields a dramatic reduction in the conductivity. For the isodensity
case, the increased volume required to maintain mass density leads to
a decreased valence electron density. Thus, the DC conductivity fol-
lows similar behavior to the electronic pressure, Fig. 1. For the isobaric
case, the valence electron density is nearly conserved (2:18� 2:35
�1024 e�=cc), but there is a drop in conductivity of �3:5 from pure
hydrogen to pure carbon. This indicates an increased electron scatter-
ing due to the carbon ions, which have higher effective charge.
Thermal conductivity follows the same behavior; in fact, we observe
that the Wiedemann–Franz law works well for these system, with
Lorentz numbers only ranging from 2.35 to 2.5V2=K2�10�8.

We compare different options for mixing rules, including the vol-
umetric conductivity mix,

rrCH ¼ VH

VCH
� rHðvC ¼ 0Þ þ VC

VCH
� rCðvC ¼ 1Þ; (28)

resistivity mix,

rRCH ¼ VH

VCH
� r�1

H ðvC ¼ 0Þ þ VC

VCH
� r�1

C ðvC ¼ 1Þ
	 
�1

; (29)

the mixing rule proposed by Starrett,

rStaCH ¼ CH

C
� rHðvC ¼ 0Þ þ CC

C
� rCðvC ¼ 1Þ ;

CI ¼ xIð �ZI Þ2; C ¼PI CI

(30)

and, finally, the mixing of the effective scattering rates

rAB ¼ �ne x;VAB½ � � c�1
AB ;

�ne ¼ ðxA�ZA þ xB�ZBÞ=VAB ;

cAB ¼ VH

VCH
� cHðvC ¼ 0Þ þ VC

VCH
� cCðvC ¼ 1Þ:

(31)

For the isodensity case, we see that the volumetric mix overestimates
the conductivities of the mixtures, while the resistive mix underesti-
mates it. We compare the Starret approach46 for a variety of �ZI

FIG. 2. Multi-component QMD-calculated density as a function xC for isobaric mix-
tures with pressure equal to Pe¼ 5580 GPa, which is the value for xH ¼ xC ¼ 0.5.

FIG. 3. Diffusion as a function xC for (a) isodensity mixtures and (b) isobaric mix-
tures. The blue and red markers are, respectively, the calculated results for DH and
DC. The purple square markers are the DCH results. The black square markers con-
nected by the dashed line are the results given by the Darken relation.
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options. The ZC ¼ 2:6=ZH ¼ 0:82 case corresponds to the effective
charge from average atom Kohn–Sham calculations from the Tartarus
code.50 We also include the valence charges ZC ¼ 4=ZH ¼ 1 to calcu-
late the Fermi momentum. When using a Thomas Fermi model to cal-
culate ZC=ZH , we note that these results agree better with Drude fits of
the AC conductivities,19,51 and the fully ionized charges
ZC ¼ 6=ZH ¼ 1. We see that the fully ionized charges do provide
good agreement, but the sensitivity to the charges is large, and full ioni-
zation is unreasonable in this temperature density regime, so we expect
the agreement is simply fortuitous. In Starrett et al.46 this disagreement
between atomistic mixtures and the mixing rule was considered as a
consequence of the low temperature. However, mixing the scattering
rates, c mix, gives much less sensitivity to the charges used to define
the electron density, with both the average atom and valence charges
giving good agreement.

For the isobaric case, we see significantly different behavior. All
mixing rules, except the direct conductivity mix, provide excellent
agreement. This is because, in the isobaric case, the conducting elec-
tron density is nearly conserved, a consequence of electronic pressure

match, thus the R� and c� mix are nearly identical. The approxima-
tions involved in Starrett’s mix also reduce to the c mix when applied
to a constant conducting electron density. The good performance of
the r mix in the isobaric case was also seen previously in gold–alumi-
nummixtures.52

Given that the Wiedemann–Franz law works well for these sys-
tems, L in Eq. (11) is nearly constant, and the mixtures are all isother-
mal, the mixing rules all behave similarly when applied directly to the
thermal conductivity (j), replacing r with j in all mixing rules. This is
shown in Fig. 5.

D. AC conductivities and optical properties

Optical properties (dielectric function, index of refraction, reflec-
tivity, and absorption) are related to the real frequency-dependent
(AC) conductivity through Eqs. (13)–(19). In Figs. 6 and 7, we respec-
tively plot the absorbance and reflectivity of the isodensity (top) and
isobaric (bottom) mixes. The isodensity cases are again dominated by
the drop in the valence electron density, with increasing concentration

FIG. 5. DC electrical component of thermal conductivity jðx ¼ 0Þ for (a) isoden-
sity and (b) isobaric mixtures for different concentrations of carbon vC. From highest
to lowest, the lines are (blue) volumetric mix of conductivity, (red) volumetric mix of
resistance, (green) Starrett ionization for ZC ¼ 4=ZH ¼ 1 (purple) volumetric mix of
effective scattering rate assuming ZC ¼ 4=ZH ¼ 1. Black dots are the fully atomis-
tic calculation.

FIG. 4. DC electrical conductivity, rðx ¼ 0Þ, for (a) isodensity and (b) isobaric mix-
tures for different concentrations of carbon vC. From highest to lowest, the lines are
(blue) volumetric mix of conductivity, (red) volumetric mix of resistance, (green)
Starrett ionization for three different ionization option (see the legend) (purple) volu-
metric mix of effective scattering rate assuming three different ionization options
(see the legend). Black dots are the fully atomistic calculation.
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of carbon. This leads to a drop in reflectivity and absorbance across
frequencies. The plasma frequency being largely dependent on the
valence electron density, we see that the “plasma edge”53 of the reflec-
tivity (a measure of the plasma frequency) drops as the concentration
of C increases. We also see that the reflectivity begins to drop signifi-
cantly below the plasma edge as the average scattering rate increases.
The transition in the isobaric mix case shows a characteristic increas-
ing of the scattering rate (dampening) in a Drude–Lorentz model as
the plasma transitions from hydrogen to carbon under a constant elec-
tron density. The absorbance peak shifts to higher frequencies and
broadens, while reflectivity drops across frequencies without changing
the plasma edge.

Electronic transitions at different frequencies are of different
nature (e.g., bound–bound, bound–free, and free–free). Thus, we
investigate how the efficacy of the mixing rules changes in optical
properties between low and high frequencies. In Fig. 8 (Fig. 9), we
show the absorbance (reflectance) of the 10% C mixture for the iso-
density (top) and isobaric (bottom) cases. Other mixtures are shown in

the supplementary material. Generally, we see that the c mix works
well at low frequencies, in both the isodensity and isobaric case, while
the r mix works better for higher frequencies. For the isobaric case,
the direct mix of the optical property and the optical property calcu-
lated via mixed conductivities gives similar results. The c mix is based
on Matthiessen’s rule for adding scattering rates. In this picture, the
electron diffuses through the system interacting with different scatter-
ing centers. This is appropriate at low frequencies when an electron
can diffuse through the system. The insets in the absorbance plots,
Fig. 8, expand the low-frequency regime, showing the superior agree-
ment of the c mix at low frequencies. In a classical picture, at high fre-
quencies, the electron is oscillating rapidly, with limited ability to
traverse between scattering centers. Thus, the direct volumetric mix
works well for high frequencies. For the reflectance, we can see the
agreement more easily. We also plot a transitional mix, where a linear
combination of both c and r mix is used, weighted by a Fermi–Dirac
factor to interpolate between the two,

XT
CH ¼ FDðxÞ � XcðxÞ þ ð1� FDðxÞÞXrðxÞ ;

FDðxÞ ¼ ð1þ eðx�1:0Þ=0:5Þ�1:
(32)

FIG. 6. Absorbance as a function of photon energy for (a) isodensity mixtures and
(b) isobaric mixtures. The different color curves correspond to various mixture ratios
shown in the legend. The curves from top to bottom correspond to 0%C (red),
10%C (blue), 25%C (black), 50%C (green), 75%C (orange), and 100%C (purple).
The corresponding top to bottom ordering in (b) is taken at photon energy �0:5 on
the x-axis.

FIG. 7. Reflectivity as a function of photon energy for (a) isodensity mixtures and
(b) isobaric mixtures. The different color curves correspond to various mixture ratios
shown in the legend. The curves from top to bottom correspond to 0%C (red),
10%C (blue), 25%C (black), 50%C (green), 75%C (orange), and 100%C (purple).
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We have chosen the values of the crossover point and smearing to be 1.0
and 0.5 atomic units, respectively. We can estimate this crossover by con-
sidering the following simple model. We approximate that the frequency
of a transition given by the change in the kinetic energy of the electron and
that the transitions are centered around the thermal electron kinetic energy,

x � ve � dv�me. Here, ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT þ ðkF=meÞ2

q
is the thermal

electron velocity, and me is the electron mass. We then assume that the
crossover occurs when dv � �h=ð2� rWS �meÞ, where rWS is the
Wigner–Seitz radius of the averaged ion. This leads to a range of crossover
frequencies from �1:3 ð1:7Þ to �0:9 ð0:8Þ atomic units for the isobaric
(isodensity) case when using ZC ¼ 4=ZH ¼ 1 to calculate the Fermi
momentum.When using an average-atom Thomas Fermi model to calcu-
late ZC=ZH , we see a similar range of �0:8 ð1:3Þ to �0:7 ð0:6Þ atomic
units for the isobaric (isodensity) case. Given the simplicity of this model,
we simply use the fixed crossover frequency of 1 a.u. in the plots, and only
use this analysis to build a preliminary understanding. Empirically, we see
that the transition is broad compared to these differences, and thus the
interaction of the electrons and ions is important.

V. CONCLUSIONS

We have calculated and analyzed the ion and electron transport
properties of warm dense CH mixtures across concentrations from
pure hydrogen to pure carbon. We considered two cases, namely, iso-
baric and isodensity, and tested different mixing rules. We applied
these mixing rules to mix atomistic Kohn–Sham DFT results for the
pure species and compared it to similar atomistic calculations of the
mixtures. Thus, we tested the accuracy of the mixing rules themselves,
applied to the best reasonably achievable level of theory in these condi-
tions, without convolution of error from the underlying theory and the
mixing rule.

Under the warm dense CH plasma conditions we consider here,
a volumetric mixing of the “effective” scattering rate provides good
agreement in the isodensity case and excellent agreement in the iso-
baric case, for electrical conductivity, thermal conductivity, and low-
frequency optical properties. This agreement is based largely on the
accuracy of the Drude model for these systems and the Matthiesen
rule for adding scattering rates. The isobaric mixing is much less sen-
sitive to the mixing model and to choices of ionization required to

FIG. 8. Absorbance (a) as a function of photon energy for (top) isodensity mixtures
and (bottom) isobaric 10% C mixture. Black line is the atomistic calculation result,
green is the volumetrically mixed reflectivity, purple (blue) is the reflectivity calcu-
lated from volumetrically mixed effective scattering rate (conductivity). Yellow dotted
line is the transitional mix from c to r mix at �1 a.u. The inset highlights the low
photon energy range from 0 to 0.3 a.u.

FIG. 9. Reflectivity (r) as a function of photon energy for (top) isodensity mixtures
and (bottom) isobaric 10% C mixture. Black line is the atomistic calculation result,
green is the volumetrically mixed reflectivity, purple (blue) is the reflectivity calcu-
lated from volumetrically mixed effective scattering rate (conductivity). The yellow
dotted line is the transitional mix from c to r mix at �1 a.u.
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determine a valence electron density for isolating the effective scatter-
ing rate. This is because the isobaric matching procedure naturally
produces nearly uniform valence electron density in order to achieve
electronic pressure match. Furthermore, we demonstrate that the
mixing rule, which best applies to low-frequency excitation, is not
the same that applies to higher frequencies. We postulate that the
length-scale associated with higher frequency excitations is shorter
than the interatomic distance, and thus the volumetric mix of con-
ductivity outperforms the volumetric mix of scattering rates due to
the breakdown of the diffusive electron transport picture
(Matthiesen’s rule).

While we have provided analysis here based on two cases, iso-
baric (�5580GPa) and isodensity (10 g/cc), we believe the general
findings of this article will apply to other cases where Drude models
reasonably fit to the low-frequency behavior, and atomic atom-free
transitions dominate higher frequencies, i.e., partially ionized systems.
In the case of colder condensed matter, where bonding plays a signifi-
cant role, inter-molecular interactions will be more prominent, and
mixing rules for optical properties will likely fail.

We have demonstrated that different mixing rules can achieve a
wide range of results, and thus one should be careful to consider the
accuracy of both the mixed quantities and the rules before applying
any procedure. Fully atomistic calculations are thus an invaluable tool
to explicitly evaluate the accuracy of these mixing rules.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional plots of reflectivity
and absorbance for different concentrations of C (1%; 10%; 25%;
50%; 75%, and 90%). These are similar to Figs. 8 and 9 of the main
article.
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