(7))
L
| .

o
—_—
((v]
c
:fU
St
Qo
L C
o

Stochastic dynamics of penetrable rods in
one dimension: Occupied volume and spatial
order

Cite as: J. Chem. Phys. 138, 244901 (2013); https://doi.org/10.1063/1.4810807
Submitted: 08 March 2013 . Accepted: 23 May 2013 . Published Online: 24 June 2013

Galen T. Craven, Alexander V. Popov, and Rigoberto Hernandez

()

View Online Export Citation CrossMark

oV

an N

ARTICLES YOU MAY BE INTERESTED IN

Stochastic dynamics of penetrable rods in one dimension: Entangled dynamics and transport
properties
The Journal of Chemical Physics 142, 154906 (2015); https://doi.org/10.1063/1.4918370

Ontology of temperature in nonequilibrium systems
The Journal of Chemical Physics 126, 244506 (2007); https://doi.org/10.1063/1.2743032

Transition state theory for activated systems with driven anharmonic barriers
The Journal of Chemical Physics 147, 074104 (2017); https://doi.org/10.1063/1.4997571

Challenge us.

What are your needs for >
periodic signal detection? Q=)

N/ Zurich
7\ Instruments

J. Chem. Phys. 138, 244901 (2013); https://doi.org/10.1063/1.4810807 138, 244901

© 2013 AIP Publishing LLC.


https://images.scitation.org/redirect.spark?MID=176720&plid=1401534&setID=378408&channelID=0&CID=496958&banID=520310234&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ed5dd4029e63a2f75704dfd96619305ac85f9c8d&location=
https://doi.org/10.1063/1.4810807
https://doi.org/10.1063/1.4810807
https://aip.scitation.org/author/Craven%2C+Galen+T
https://aip.scitation.org/author/Popov%2C+Alexander+V
https://aip.scitation.org/author/Hernandez%2C+Rigoberto
https://doi.org/10.1063/1.4810807
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4810807
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4810807&domain=aip.scitation.org&date_stamp=2013-06-24
https://aip.scitation.org/doi/10.1063/1.4918370
https://aip.scitation.org/doi/10.1063/1.4918370
https://doi.org/10.1063/1.4918370
https://aip.scitation.org/doi/10.1063/1.2743032
https://doi.org/10.1063/1.2743032
https://aip.scitation.org/doi/10.1063/1.4997571
https://doi.org/10.1063/1.4997571

THE JOURNAL OF CHEMICAL PHYSICS 138, 244901 (2013)

® CrossMark
¢

Stochastic dynamics of penetrable rods in one dimension: Occupied
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The occupied volume of a penetrable hard rod (HR) system in one dimension is probed through the
use of molecular dynamics simulations. In these dynamical simulations, collisions between penetra-
ble rods are governed by a stochastic penetration algorithm (SPA), which allows for rods to either
interpenetrate with a probability §, or collide elastically otherwise. The limiting values of this pa-
rameter, 6 = 0 and § = 1, correspond to the HR and the ideal limits, respectively. At intermediate
values, 0 < § < 1, mixing of mutually exclusive and independent events is observed, making predic-
tion of the occupied volume nontrivial. At high hard core volume fractions ¢, the occupied volume
expression derived by Rikvold and Stell [J. Chem. Phys. 82, 1014 (1985)] for permeable systems
does not accurately predict the occupied volume measured from the SPA simulations. Multi-body ef-
fects contribute significantly to the pair correlation function g,(r) and the simplification by Rikvold
and Stell that g,(r) = § in the penetrative region is observed to be inaccurate for the SPA model.
We find that an integral over the penetrative region of g,(7) is the principal quantity that describes
the particle overlap ratios corresponding to the observed penetration probabilities. Analytic formulas
are developed to predict the occupied volume of mixed systems and agreement is observed between
these theoretical predictions and the results measured from simulation. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4810807]

Il. INTRODUCTION

Atoms and molecules can be treated as overlapping par-
ticles when soft interaction potentials allow them to partially
penetrate through each other relative to their van der Waals
distances. But the centers of atoms—nuclei—are not consid-
ered to be transparent in all-atom models and thus pairwise
interaction potentials that seek to capture this condition of nu-
clear non-transparency are infinite valued at the origin. When
a coarse-grained description of the atomic degrees of free-
dom is applied, it is often useful to simulate nuclear trans-
parency using a class of potentials that are finite valued at the
origin. These potentials have been termed bounded potentials
and have been useful in modeling many soft matter and col-
loidal systems. '™

A well-known bounded potential is the generalized Gaus-
sian core (GGC) model,’

VGGC(r) = € exp [— (;%)n] .

For the exponential parameter value n = 2, the GGC takes
the form of the Gaussian core (GC) model first introduced by
Stillinger.® The phase behavior of the GC model has recently
been studied’”-® along with the thermodynamic properties.’
In the limit of n — oo, the Gaussian core acquires a piece-
wise form of a penetrable sphere (PS) model of interac-
tions between solvated micelles, introduced by Marquest and
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where o represents the length of the particles. The structural
and thermodynamical properties of the PS model have at-
tracted significant attention,''~'® in part due to the model’s
simplicity. This completely repulsive potential has been ex-
tended to include attractive sections'’~'° for the purpose
of modeling thermodynamic and phase behavior of more
complex fluids.

Molecular dynamics (MD) simulations have been per-
formed using the PS potential,”’ and the results have been
used to predict the occupied volume fraction, as well as static
and transport properties of the PS systems. The hard edges
of the PS potential, given by Eq. (1.2), facilitates the study
of the volume occupied by overlapping particles (the particle
phase). Measuring the occupied volume and surface area of
hard-edged overlapping objects is also of interest in studies
of the microstructure of porous media?'~>* in which the un-
derlying systems often exhibit permeable behavior.

A characteristic of overlapping hard-edge systems is that
the geometric properties can be obtained readily using either
analytic studies”>?® or simulations.?’?> The (analytic) geo-
metric analysis relies on discrete identification of positions as
either being associated with a particle or a void. In soft (or
continuous) potentials, such identification is ill-defined and
hence the analytic treatments are not applicable.

Blum and Stell*? introduced a generalized model, called
the permeable-sphere model (PSM), with a one parameter

© 2013 AIP Publishing LLC
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bridge between the hard core and ideal behavior. Namely, the
pair correlation function g(r) between two particles is as-
sumed to be constant at r < o,

g2(r):1_)"7

where A is the “permeability parameter.” The values A = 1 and
A = 0 correspond to the hard sphere and ideal gas behavior,
accordingly. Note that a potential in the form of Eq. (1.2) does
not automatically lead to a constant value of g,(r) at r < o.
This model provides impetus for the system studied in this
article.

The stochastic penetration algorithm (SPA), introduced
in this article and described in detail in Sec. II A, is another
approach for modeling penetrative particles in which colli-
sions are governed by stochastic rules. In future work, we seek
to understand how explicit solvent geometries affect reactive
systems in solution. By changing the outcomes of stochastic
collision events, the SPA allows variation of coupling strength
between solvent and solute. While the SPA is an abstraction of
a physical system, the results obtained using this model can be
used to represent and predict the behavior of coarse-grained
solvents where hard-edge boundaries are representative of the
physical solvent geometries.

Stochastic collision rules have been used previously in,
for example, Lorentz gas systems.**7 Therein, the collision
with a fixed scatterer can lead either to the reflection of the
colliding particle or the transmission of the particle through
the scatterer, subject to the outcome of a stochastic variable.
These stochastic models have provided analytic insight that
was previously unavailable from purely deterministic mod-
els. Within the framework of the SPA, a random process—
consistent with a given probability—assigns each event be-
tween a pair of particles as being entirely penetrable or hard
sphere. The nature of the interaction remains the same as long
as the pair remains within some distance of each other, and
this continuous time interval defines a given event.

Hard-body systems are known to capture the properties
of simple fluids®® and thus they remain a current research
topic for both equilibrium and non-equilibrium systems.?**!
We utilize the SPA to extend the accessible range of pairwise
interactions beyond hard spheres while reducing the dimen-
sionality to one for simplicity. This study of hard spheres—
hard rods (HRs) in one dimension—is an obvious simplifica-
tion of the 3D picture but does give insight into the physical
properties of more physically realizable systems. The equa-
tion of state (EOS) for a bounded one-dimensional HR sys-
tem has been completely solved by Tonks.*> This solution
has given insight into hard core systems in dimensionalities
greater than one, where closed form solutions to the EOS are
not available.*> Analogously, by mixing reflective and pen-
etrative collision outcomes, the SPA model can be used to
mathematically elucidate the properties of bounded penetra-
ble systems to a larger extent than is currently available for
deterministic bounded potentials. In this way, the SPA can
be considered pseudo-soft as the pairwise potential is a mix
of completely hard and completely soft interactions, but the
mixing of these interactions creates ensemble properties that
resemble properties obtained using soft-bounded potentials,
such as the PS model, exclusively. In the SPA, the momentum

(1.3)
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distribution of the system is conserved and thus an analytical
analysis can be greatly simplified. The results of these analyt-
ical treatments can be used to gain insight into the dynamical
and static properties of physical systems that can be repre-
sented by such models.

The paper is outlined as follows: In Sec. I A, we describe
the SPA with a stochastic collision rule for HRs constrained
to move on a line in one dimension. Using this stochastic col-
lision model we are able to change, through a parameter §,
the softness in the underlying interactions within the parti-
cle ensemble and thus bridge the behavior between the lim-
its of impenetrable hard particles and completely-soft (ideal)
particles. In Sec. I B, the computational problem of mea-
suring the occupied volume fraction is discussed and a sim-
ple solution applicable in one dimension is given. Section III
includes derivations of theoretical expressions for the occu-
pied volume fraction of stochastically penetrable particles.
The dependence of these expressions on the radial distribu-
tion function g,(r) is discussed and the results from theory
are compared to the results measured from MD simulations.
The structural properties of stochastic models measured from
simulation are presented and the disordered structure inher-
ent within these stochastic penetration models is discussed.
In Sec. IV, we discuss the results obtained for the occupied
volume fraction and the structural properties along with pos-
sible future applications of the SPA.

II. NUMERICAL METHODS
A. Model and simulation details of the SPA

MD simulations have been performed on a system of
N = 20 rods with each particle having a length o = 3 A and
mass m = 14 m, (m, is the atomic mass unit). These particles
are constrained to move in one dimension on a line of length
L,, with periodic boundary conditions. The HR volume frac-
tion ¢g = No /L, is the occupied volume fraction of the system
when no particles overlap. In the case when the particles can
overlap each other, the actual volume fraction ¢ does not ex-
ceed the HR one, ¢ < ¢y.

The values of the particle number density p = N/L, and
¢o are changed by varying the value of L, while keeping N
constant. The HR volume fractions chosen for the study are
¢o € {0.125,0.25, 0.5, 0.75, 0.968}. A Tonks gas does not ex-
hibit a phase transition** and therefore the system remains in
the fluid phase within this range of volume fractions (a fluid-
solid phase transition occurs for hard core systems only in
dimensions greater than one).

To account for penetrability of the particles in the SPA,
we introduce a single bridge parameter §, analogous to the
bridging parameter used by Blum and Stell* for their PSM,
Eq. (1.3). The limiting values of this parameter, § = 0 and
8 = 1, correspond to the HR and the ideal behavior limits,
respectively.

Algorithmically, the SPA is implemented as follows. For
every molecular dynamics trajectory, a value of the pene-
tration probability § € [0, 1] is preassigned and maintained
throughout the trajectory. When a pair of particles i and
J collide at time 7., a random number a;; (fco) € [0, 1] is
generated from a uniform distribution. This random number
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determines, upon its comparison to §, whether or not the pair
of rods will interact. If a;; (fco1) > 8, the rods interact via
a hard core potential; otherwise the particles penetrate each
other without interacting, and the spatial correlation between
them vanishes. This lack of spatial correlation corresponds to
pairwise ideal behavior. For § = 1, spatial correlation is re-
moved for all pairs and the dynamics of the system of rods
are completely ideal. For § = 0, all pairwise interactions are
governed by a hard core potential and the dynamics observed
are that of a Tonks gas, a system of HRs confined to move on a
line in one dimension. For the overlapping particles which do
not interact, this relationship between a;; (fco1) and § is main-
tained until r;; > o, i.e., the zero interaction potential is kept
until the pair breaks apart. If the same pair of particles (i, j)
undergoes a new collision at time #.,; + 7, then a new ran-
dom number a;; (fco1 + T) is generated and the acceptance al-
gorithm is repeated. This algorithm is used to construct all
pairwise interactions in the SPA simulations. The correspond-
ing potential between particles i and j is described by the fol-
lowing equation:

0, r > o,
VPR =10,

0o, r <o and a;j (tco) > 8.

r <o and a;j (tcol) < 6, 2.1

The interaction between all particle pairs can be repre-
sented by undirected network graphs with each node cor-
responding to a specific particle. For a system of N parti-
cles, there are N(N — 1)/2 possible connections associated
with the pairwise interactions—HR at § = 0 or penetrative at
8 = 1. Figure 1 shows representative graphs of different con-
figurations that can be observed using the SPA. As the sys-
tem evolves in time, connections can be made and broken
due to the stochastic nature of the SPA allowing for a sam-
pling of different network configurations. For both a Tonks
and an ideal gas, the spatial boundaries for every particle
can be calculated from knowledge of the connection network.

o A’Q[) s 20
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FIG. 1. Representative graphs for a system consisting of N = 20 particles,
showing different configurations of the connection network. Each graph node
located on the circumference of the circle corresponds to a different particle.
The lines represent the complete graph Ky — all the N(N — 1)/2 theoretically
possible connections available for a system. Lines are colored in red or blue
depending on if they correspond to an activated HR connection or a non-
activated connection, respectively. The network with j activated connections
is denoted as Ky: j. The configuration ¢ is an element of the possible set of
permutations for a Ky: j network.

J. Chem. Phys. 138, 244901 (2013)

These boundaries define the configuration integral and lead to
closed form solutions of the partition functions. The equilib-
rium thermodynamic properties for these systems are conse-
quently also contained in these types of connection networks.
They can be extracted directly from the graphs in Fig. 1 and
the corresponding adjacency matrices used to construct them.

To propagate the dynamics of the SPA, the particle po-
sitions and velocities are updated through a combination
of the time-driven method and the well-known hard-sphere
algorithm.* Note that at the time of a given collision between
two particles, their velocities are exchanged as the collision
is elastic and the particles have equal masses. In other words,
the velocity distribution is conserved during the evolution of
the system, in contrast with the PS model and other models in
which particle interactions are governed by soft potentials.

The initial positions for the particles are chosen by plac-
ing their centers on a uniform lattice. The initial velocities
are sampled randomly from a Maxwellian distribution corre-
sponding to 7 = 300 K. For each value of § and ¢(, 8000
trajectories have been simulated for a time of 1000 ps. The
simulations are partitioned into three phases: an initial spatial
and thermal equilibration phase, a second spatial relaxation
regime, and a sampling phase.

During the first phase, lasting 12.5 ps, all interactions be-
tween particles are represented by HR potentials. After the
initial velocities are assigned, these velocities are rescaled
such that the total energy of the system, for every trajectory,
corresponds to 7 = 300 K. This thermal equilibration step is
achieved by measuring the kinetic temperature,

N
m

T = 1)42,

" Nkg Zl,:l'

and scaling the velocity of each particle using the equation

2.2)

; T (2.3)
After one such rescaling the kinetic energy of the system be-
comes NkT/2. Since all collisions are elastic, all the energy
of the system partitioned into the kinetic term is constant.
The conservation of energy implies that these simulations take
place in a microcanonical (NV E) ensemble with the kinetic
energy corresponding to 300 K. Although for the HR inter-
action, it is not necessary to perform the rescaling procedure
during 12.5 ps, we keep this operation in the code for future
studies employing soft potentials.

The second equilibration phase is performed until the to-
tal simulation time reaches 500 ps. During this phase, the SPA
algorithm is applied, allowing particles to overlap. Figure 2
shows different spatial configurations of overlapping particles
that can be observed for a penetrable HR system. Note that the
connection network Ky: j, presented in Fig. 1, does not spec-
ify the spatial arrangement of a set of overlapping particles as
a given spatial configuration can be generated by many such
networks.

As illustrated in Fig. 2, the volume fraction ¢ is reduced
from its initial value ¢ as the rods interpenetrate. The geom-
etry of the system, as well as the distribution of free volume
cavities, can be significantly altered by this penetration. As
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number of particles

[ .
0 1 2 3 o 5

FIG. 2. Several snapshots of configurations that 8 particles can take as opposed to the 20 particles in Fig. 1. The connection network of this 8 particle system
can be represented by the complete graph Kg. The network evolves through different connection networks ¢; — ¢ — ¢3 — ca, respectively, illustrating how
the observed volume fraction ¢(¢) starts with ¢ and then changes with time due to particle overlaps.

shown in Fig. 3, the relaxation of ¢ is fast and the measured
volume fraction is seen to relax to its equilibrium value during
this second equilibration phase.
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FIG. 3. The measured volume fraction ¢(¢) as a function of time showing
the fast relaxation to equilibrium for various values of the hard rod volume
fraction ¢o and the penetration probability parameter §. Although labeled, the
curves are also indicated in color as blue, green, red, and cyan for values of §
equal to 0, 0.05, 0.5, and 1, respectively. The dashed vertical line corresponds
to the time (12.5 ps) at which the penetration algorithm begins.

After two initial equilibration stages, sampling of the
equilibrium values of the system is performed up to
t = 1000 ps. During this sampling phase, the spatial coor-
dinates of the system were written to disk every 0.1 ps and
ensemble averaging of these trajectory frames was used in
calculating all observable quantities presented in this article.

B. Measurement of the occupied volume fraction

The determination of the occupied volume of systems
with overlapping particles is non-trivial and can be compu-
tationally expensive if exact methods are not applicable. Two
methods that have been used previously to measure the occu-
pied volume are Monte Carlo (MC) integration®**® and the
so-called GRID method.?%2%-30

The brute force MC approach, analogous to simple MC
integration procedures, involves choosing a random spatial
coordinate and checking if that coordinate is overlapped by
a particle from the system. Unfortunately, the computational
cost of the MC method makes it intractable for integration of
a high number of trajectory frames when a large number of
significant figures is needed.

In the GRID method, a sample space is first discretized
into a set number of bins. These bins are then probed indi-
vidually to see if any particle overlaps with the chosen bin.
For a hypercubic structure in dimension D, discretization of
the one-dimensional length L, into k bins scales as kP. Lee
and Torquato®” extended this simplistic one length scale dis-
cretization approach by further subdividing a bin if it contains
two phases: the particle phase and the void phase. That is, if a
particle edge overlaps a given bin, then the bin is subdivided
into smaller ones and the procedure is repeated in the subdi-
vided space. As the size of the grid goes to zero, the exact
measure of the occupied volume will be obtained. However,
the computational cost of this method is also high.

To overcome this computational problem, a cluster mea-
sure approach has been applied for calculating the volume
fraction. A cluster is defined as a formation consisting of
N > 1 particles (thus, a single particle can be termed a cluster).
For a set of N particles, there exist a maximum of N clusters,
corresponding to a configuration where no particles are over-
lapped, and a minimum of one cluster, corresponding to the
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configuration where all of the particles are overlapped into
a single cluster. In one dimension, it is simple to determine
the beginning and end points, x*°#" and x", of these clusters
along the line segment L. After ordering the particles, ¢ can
be found by summing the sizes of all the (nonoverlapping)
clusters

()Cfnd _ x})egin) )

1 all clust

¢ = - Z (2.4)
i=1

This method gives no measurement error and is accurate to
floating point precision. Some other cluster-based algorithms
have been proposed for two-dimensional systems.*’ If com-
parably efficient algorithms can be applied in higher dimen-
sion, large increases in computational efficiency could be ob-
served for other models where there is overlap in one phase of
the media and a measure of occupied volume is computation-
ally taxing. The simulation cost of HR systems far from the
thermodynamic limit, like the systems presented in this arti-
cle, is negligible compared to the computation time of post-
processing the trajectories and, thus, using the cluster mea-
sure method greatly accelerates the rate of data acquisition
and analysis.

lll. THEORY AND RESULTS
A. Spatial order

The HRs with initial positions placed on a periodic lattice
will oscillate about those lattice points with some approxi-
mate frequency that is dependent on the velocity distribution.
To verify that a HR system has reached an equilibrium spatial
configuration, it is common to wait until the measured pres-
sure becomes equal to the equilibrium one*® as the equation
of state for a HR system is known exactly.*> For SPA dynam-
ics, the equation of state is known only for the limiting values
of § and therefore this method of equilibration verification is
not available.

According to Haus and Raveché,* the translational order
parameter,

N
f@) = % Z cos (2mpx;) (3.1)
i=1

acquires its equilibrium value if a HR system with concentra-
tion p = N/L, reaches equilibrium. As discussed in Ref. 49,
f(t) = 1 for a crystalline array where particles do not move
from their original lattice positions. For an ordered configu-
ration f{¢) fluctuates about a non-zero value, and for a ran-
dom configuration f{¢) fluctuates about zero. For a system with
periodic boundary conditions, the center-of-mass coordinate
Xcom Moves with a slow constant velocity veom. By account-
ing for the center-of-mass translation of the lattice points, we
define a shifted translational order parameter,

LN
h) =+ ; €08 (2710 (X — Xeom)) - (3.2)
Figure 4 shows the time evolution of A(f) using SPA dynam-
ics. The spatial structure persists only at the extremes, i.e., for

the most ordered (§ = 0) and dense (¢ = 0.75 and 0.968)

J. Chem. Phys. 138, 244901 (2013)
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FIG. 4. The shifted translational order parameter 4(f) averaged over 50 tra-
jectories. The curves are color coded as in Fig. 3 with the addition of 6 equal
to 0.25 and 0.75 which are colored in magenta and orange, respectively. The
dashed vertical line corresponds to the time (12.5 ps) at which the penetration
algorithm begins.

systems. The function A(¢) falls quickly to the disordered A(r)
= 0 value at § > 0, when particles can overlap each other,
thus exchanging their positions on the lattice and causing a
degradation of the order.

B. Pair correlation function and the penetration
coefficient

Salsburg, Zwanzig, and Kirkwood®® have derived an
exact analytic expression for the radial distribution func-
tion g»(r) for the HR model. This structural prediction has
been shown to agree with results obtained through MD
simulations.***> MD studies of one-dimensional systems
have extended to soft potentials®’ and therefore the numer-
ical results observed for the HR model can be compared to
potentials that give some degree of penetration while still re-
maining unbounded at the origin. Because of the penetrable
nature of one-dimensional bounded potentials, complex inter-
action networks can be created. The presence of these multi-
body interactions can contribute significantly to the structural
and dynamical properties and thus an analytical treatment of
such systems is often found to be intractable even in one
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dimension. In a SPA system, the interactions are nearest
neighbor interactions as particles penetrate each other with
no energy cost. As such, the SPA system is sufficiently simple
that the thermodynamic and structural properties likely admit
to a tractable analytic analysis.

Within the SPA model, the pairwise overlapping prob-
ability § has a significant influence on the form of the pair
correlation function (see Fig. 5). The latter, therefore, can in-
clude § as a parameter: g, = g»(r; §). An integral of g,(r; §)
over the penetration region,

¢ =~ [ neuoa (33)
o Jo
defines the multi-body induced probability to find a particle
at r < o and, in general, is not equal to §, opposite to the
PSM, Egs. (1.3), where it is postulated (see also Eq. (3.5) be-
low). Figure 5 illustrates the fact that the pair correlation func-
tion approaches constant behavior for r < o only when ¢ is
small. At higher ¢ values, the penetrative region indicated by
g2(r; §) is nonlinear. Observation that g,(0; §) > g2(07; §)
(0~ represents approaching the discontinuity at r = o from
the left) with the equality holding only for the limiting val-
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FIG. 5. The pair correlation function g»(r; §) measured from simulations at
various ¢o and § values using a histogram bin width of 0.01o. The curves
are color coded as in Fig. 3. The blue dashed curves correspond to the results
obtained for an impenetrable HR system, i.e., when § = 0.
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ues of § and at infinite dilution shows a propensity for the
particles to be heavily overlapped in a volume reducing state.
This reduced volume state can be explained thermodynami-
cally by noting that it is favorable for a system to be in a state
that reduces the pressure. For a cluster of N > 2 particles, the
particles in the cluster are free to overlap each other with no
energy cost as given by Eq. (2.1). This cluster can be con-
fined between a pair of particles where the confining pair and
the cluster interact through HR interactions. When this over-
lapping cluster is formed, the system moves spontaneously
toward a reduced pressure state. The confining particles push
on the cluster and this applied pressure forces the cluster into
a state that minimizes the occupied volume. This minimiza-
tion occurs when all the particles in the cluster are completely
overlapped and the propensity for complete overlap gives rise
to the inequality g,(0; §) > g2(07; §). At low § and large ¢y,
where clusters are likely to be confined, this phenomenon is a
prominent feature of g,(r; §), but for high § values the contri-
bution is not significant.

Figure 6 shows ¢ as a function of §. The ¢ values are cal-
culated by numerical integration of Eq. (3.3) for g,(r; &) val-
ues obtained from MD simulations. Figure 6 also shows that
as the system becomes less dense the overlap ratio approaches
the PSM behavior,

lim ¢ =§

34
P (3.4

(compare with Eq. (3.5)). As ¢ moves away from this limit,
the ratio of ¢ to § also increases, showing that the actual over-
lap ratios are given by ¢ and not §. The cause of this move-
ment to ideality can be seen in Fig. 5, where g»(r; §) is almost
constant for r < o at ¢g = 0.125.

In applications, the actual penetration coefficient ¢ must
be used in place of § to account for multi-body effects.

0.0

0 0.2 0.4 0.6 0.8 1.0

J

FIG. 6. ¢ as a function of § showing the deviation from ideal behavior for
the observed particle overlap ratios. ¢ is obtained from simulation using
Eq. (3.3). The black dashed line corresponds to the infinite dilution limit,
where { = 8.
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C. Occupied volume fraction

For the PSM posited by Blum and Stell** with a pair cor-
relation function given by Eq. (1.3), the probability § to find
more than one particle in the penetrative region is

1 o
s = —/ x)dx =1—A. (3.5
g Jo
Rikvold and Stell’? (RS) used the Kirkwood superposition ap-
proximation for a multi-particle correlation function,

gnrior)= ] &0y, (3.6)
I<i<j<n
to derive the occupied volume fraction of a PSM system:>*34
o k
RS _ (_¢O) i)
P (8) = —; a0 3.7

(cf. Eq. (8) in Ref. 54), where ¢ is the volume fraction for a
HR system consisting of N particles,

No
$o = I
At 6 = 0, Eq. (3.7) gives the exact value for a HR gas,
1131? (0) = ¢p. A limiting value at § = 1 recovers another exact
result for the ideal behavior of fully permeable spheres in the
thermodynamic limit (N — oo, L, — 00),

PRE(1) = 1 — exp[—¢ol.

Equation (3.9) is the well known Poisson distributed
result?*>> for the volume fraction of particles with no spa-
tial correlation at the thermodynamic limit. Note that both
Egs. (3.7) and (3.9) are valid for any spatial dimension D.

The RS derivation of the volume fraction for the PSM de-
pends on g»(r) being constant in the penetrative region. This
simplification should give good agreement to simulation re-
sults if, in the Ornstein-Zernike formalism, direct contribu-
tions between two particles are the dominant terms in g,(r),
while the indirect contributions due to multi-body effects are
relatively small.

For finite N, the dimensionally invariant expression for
the occupied volume of particles with no spatial correlation is

_ ¢o\"
oo (1-8)"

It stems from the fact that the probability for one particle not
to cover a selected pointis 1 — o/L, = 1 — ¢o/N, and for N
uncorrelated particles it is (1 — ¢o/N)Y. At N — oo, Eq. (3.10)
acquires the form of Eq. (3.9) — its thermodynamic limit. The
difference between these equations lies in the series expan-
sions over ¢y,

(3.8)

(3.9)

(3.10)

N
¢=->_ Cidf. G.11)
k=1
whereas
i) = — > Cdy. (3.12)
k=1
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The coefficients of these series are

/ N\ (= DF
C, = , 3.13
¢ (k) NF G139
and
=Dk
Cy = a0 3.14)
where (IZ ) is the binomial coefficient. As N — oo, C; — Cy.

Analogously, in the RS formula, Eq. (3.7), with finite N,
the exponential power series coefficients C; must be replaced
by the finite series coefficients C;, to obtain

N N\ (=) wan
INOEESY (k>—( :,),f) s (3.15)

k=1

The results given by Eq. (3.15) are compared to the data ob-
tained from MD simulations in Fig. 7. It can be seen that
for small ¢y € {0.125, 0.25}, these results show excellent
agreement, but as ¢ is increased, ¢§ns(8) deviates signifi-
cantly from the simulations, especially for small §. While the
RS formula does capture the nonlinear nature of ¢, it fails
to give accurate predictions over all values of ¢ and §. In
Sec. III C 1, we derive an expression which is shown to have
excellent agreement with the results obtained from simula-
tion. A second semi-empirical functional form is summarized
in the Appendix. This model agrees with the results obtained
from MD simulations up to the inclusion of two ad hoc (fit-
ting) parameters.

_ e
0.2t ¢, =0.25
pe-9o— o o o - ¢ @
$,=0.125
Il Il Il Il
0-05 0.2 0.4 0.6 0.8 1.0

J

FIG. 7. Occupied volume fraction ¢ as a function of the penetration proba-
bility parameter §. The blue filled circles are the results of MD simulations.
The uncertainty in these measurements is less than the size of the markers.
The RS formula given by Eq. (3.15) is shown as orange filled squares. The
SIM results given by Eq. (3.20) are shown in red. The SEPC results given by
Eq. (A2) are shown in dashed magenta.
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1. Sequential iteration method

While Eq. (3.15) gives satisfactory results for dilute sys-
tems, as ¢y is increased, the theoretical predictions show sig-
nificant deviations from the simulations. Interestingly, at large
@0, small perturbations from the two limits show different be-
havior.

As can be seen in Fig. 7, when § is reduced slightly from
the ideal limit (§ = 1), the response of ¢ is small and ap-
parently linear. Contrast this to the case where § is increased
slightly from the HR limit (§ = 0) and ¢ responds with a large
decrease. The nonlinear regime close to § = 0 is caused by the
propensity for clusters to be in a completely overlapped state
as discussed in Sec. III B.

A conjecture supported by Figs. 6 and 7 is that

lim M (3.16)
o1 dS |5_
and
do(s
lim ﬂ = —00. (3.17)
o1 d§ |5_

These findings reveal another feature of the penetrable par-
ticles: at high density, even a subtle chance to overlap will
unavoidably be realized. In higher dimensional systems, we
conjecture that it may even give rise to phase transitions.

To account for the nonlinear behavior of ¢ for dense sys-
tems, an expression for the volume fraction can be constructed
through the sequential addition of particles. The sequential
iteration method (SIM) is implemented approximately as fol-
lows: The probability that the first particle added to the system
does not cover a random point A on L, is

L,—o0o
qo = L.

(3.18)

Let Q™ denote the conditional probability that a random point
is not covered by the nth particle given n — 1 particles have
already been added (obviously, Q" = g). Then the occupied
volume fraction after adding » particles can be found as

n

¢(n) —-1— 1_[ Q(k).

k=1

(3.19)

Within the SIM approximation, the occupied volume fraction
is a function of N and the parameter é and is calculated as

oSM(N, 8) = ¢, (3.20)

The iterative procedure of calculating the values of Q% for all
ke {1,..., N} is discussed below.

When a second particle is added, then there is a chance
it “does not see” the first particle because the HR interaction
is not activated. If there are only two particles in the system,
then their pairwise penetration probability is 6. However, for
the N-particle system, the overlapping probability must obey
the many-body condition and, therefore, cannot simply be
equated to §. As discussed in Sec. III B, the actual penetra-
tion coefficient ¢ from Eq. (3.3) must be used in place of § to
account for multi-body effects. Thus, the probability that the
second particle can overlap the first one, and does not cover
point A is (£ qo). Alternatively, when the particles do see each

J. Chem. Phys. 138, 244901 (2013)
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FIG. 8. A graphical representation of how the first 3 terms in the SIM are
constructed. The black circle in each layer is a new added particle. The solid
circles correspond to particles that have an activated HR connection with the

black one. The dashed circles represent particles that are not connected with
the black one (allowed to penetrate through it).

other, as realized with probability (1 — ¢), then these particles
behave as HRs. The probability that the point A is not covered
by the second particle is denoted as g;. The latter differs from
qo since the HR interaction must be taken into account in the
last case. Combining these two outcomes gives the probability
of A not being covered by the second particle,
0% =¢q0+ (1= 0)qr. (3:21)
Analogously, the probability that the third particle added
to the system does not cover point A consists of three terms
0% =2q0+2¢(1 = O + (1 = 0, (3.22)
where the first term is the probability that the HR interaction
is not activated between the new and two previously placed
rods, and the third rod does not cover point A; the second term
is the probability that the HR interaction is activated between
the third and one of two other particles, and the third rod does
not cover point A; and the last term is the probability that the
HR interaction is activated between the third and two other
particles, and the third rod does not cover point A.
As illustrated in Fig. 8, the general probability of A not
being covered by the ith particle is

i—1

.  — 1 .
0"=3 ( . )(z)””(l ~ Ok,

k=0

(3.23)

where ¢ is the probability point A is not covered by a new
added particle given k activated particles have already been
placed in the system. This probability must be defined before
the expression can be evaluated.

For a new (k 4 1)-th particle added to the system, the
available volume is decreased due to previously added parti-
cles. Because the actual penetration network is not known for
these k particles, the volume decrease will be estimated in the
mean field sense, noting that it must be proportional to the
occupied volume fraction ¢, so that the available volume is
L. — «L:»"®, where « is the coefficient of proportionality.
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Therefore, analogously to Eq. (3.18),

Ly — L™ —a  gqo — kp®
Lx - Kka¢(k) 1- Kk¢(k) .

a = (3.24)

To determine the coefficients k;, we note that at § = 0
the HR interactions are activated throughout the particles net-
work, and the corresponding occupied volume fraction for the
HR system is

¢ = ko/Ly = k(1 = qo). (3.25)
On the other hand, ¢(0) = 0, so that 0¥ = g;_,, and
¢® =1—qoq1 - qi-1. (3.26)
Combining these results, one obtains
qoq1 -+ - qk—1 = 1 — k(1 — qo). (3.27)
This relation allows one to express g via qo,
o= Dok 1—(k+1)(1—610)' (3.28)

T Qg1 Qi 1 — k(1 — go)

Comparing this formula with Eq. (3.24) and taking ¢ from
Eq. (3.25), one can find that all the coefficients k are equal
to unity, k; = 1, so that the recurrence relation (3.24) reads

qo — ¢p®
=T gm

Equations (3.19), (3.20), (3.23), and (3.29) constitute the
main result of this section, which connects the occupied vol-
ume fraction with the penetration probability. In the limiting
cases it leads to the well known results: for § = 0,

No

L,

which is the HR limit given by Eq. (3.8), and for 6 =1,
¢S™MN, 1) =1 ¢, (3.31)

(3.29)

¢S™M(N,0) =1 —goq1 -+ qn-1 = —, (3.30)

which is the exact result given by Eq. (3.10).

The results of the SIM approximation are shown in
Fig. 7. It can be seen that this method shows excellent agree-
ment across all ranges of § and ¢y, including the nonlinear
regime close to § = 0 at large ¢o. While the RS formula fails
to agree with the simulation data, the SIM appears to cor-
rect the derivation flaws present in Eq. (3.15) and thus gives
a more accurate method for predicting ¢ in one-dimensional
systems in which the dynamics are propagated using the SPA.

2. Iso-$ lines

It is interesting to observe ¢ as a function of ¢ with over-
laid lines corresponding to the constant § values. As seen in
Fig. 9, when these iso-§ lines are approximately vertical, there
are small deviations between & and ¢. Thus, the predicted
overlap ratios are the same as the observed overlap ones. At
these points, g»(7; §) & § and the RS formula of Eq. (3.15)
provides good agreement with simulation. It can be conjec-
tured that if Eq. (3.5) holds, expressions that rely on this
pair correlation function value in the penetrative region can
give accurate results for the occupied volume of a penetrable
system.

J. Chem. Phys. 138, 244901 (2013)
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FIG.9. Occupied volume fraction ¢ as a function of the observed penetration
probability parameter ¢. The curves are indicated as in Fig. 6. The black
dashed curves represent the iso-6 lines.

IV. CONCLUSIONS

In this work, we have developed a new model to simulate
the dynamics of penetrable systems in one dimension through
the use of a SPA. This stochastic algorithm allows the simula-
tion of pseudo-soft matter where particles can overlap despite
being governed by potentials that are unbounded at the origin.
Molecular dynamics simulations of several SPA systems have
been performed using stochastic collision rules. The results
of these simulations have been used to measure the occupied
volume of overlapping hard rods confined to move on a line.
While a theoretical prediction of the occupied volume is a
fundamental question, the application of theories previously
developed for analogous permeable systems>>>* fails to give
agreement with the simulation results. This has necessitated
the derivation of new analytical expressions for the occupied
volume fraction for permeable rods satisfying the SPA. We
found these to be in excellent agreement with results obtained
from dynamical simulations of penetrable homogeneous sys-
tems in one dimension.

A quadrature of the penetrative region of the pair cor-
relation function is found to be of principal importance in
predicting the overlapped particle ratios and thus structural
knowledge of overlap probabilities is necessary to predict the
occupied volume due to the non-negligible contribution of
multi-body effects at high densities. In some cases, to be pre-
sented in future work, closed form solutions for the structural
properties of stochastically penetrable models are known. As
such, stochastic potentials could provide a methodological
framework to acquire analytic solutions to problems that are
otherwise intractable when framed deterministically. Addi-
tionally, we conjecture that one-dimensional penetrable mod-
els could allow for solubility of non-penetrable models in
higher dimensions when the lower dimensionality is treated
as a projection from higher dimensions.
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APPENDIX: SEMI-EMPIRICAL PERTURBATIVE
CORRECTION

The occupied volume fraction is well known in the lim-
iting cases of § = 0 and § = 1 where it takes the exact
forms, Egs. (3.8) and (3.10), respectively. At small ¢, where
multiple particle overlaps result in small contributions to
g2(r; 8), the two limiting values are approximately additive
and weighted by §. In this low density approximation (LDA),
the interpolated volume fraction is

N
PPA = (1 = 8)p + 8 1-(1—%) , (A1)

and is valid for any D. While the iterative procedure devel-
oped in Sec. III C 1 shows excellent agreement with the vol-
ume fractions obtained from simulation data, the analytic ex-
pression can be cumbersome, especially for large values of
N. A focus of our future research is to understand how ex-
plicit solvent geometries affect reaction rates and molecular
geometries as a chemical reaction proceeds.”®>’ As such, a
simple analytic functional form is needed for use in reaction
rate formulas, and so we propose a semi-empirical perturba-
tive correction (SEPC) of Eq. (A1) where a perturbative term
Py has been added

N

To keep limiting values of ¢ unchanged, i.e., to maintain the
exact limits at § = 0 and § = 1, a perturbation of the form

1 4 a(¢o) JS)
1+ a(go)v/8

is conjectured. It corresponds to a one-term approximation for
the higher order overlap probabilities. The functions «(¢¢)
and a(¢o) are calculated by fitting Eq. (A2) to the MD data
and are equal to

K (o) = 0.121¢2 + 0.266¢; — 0.159¢;,

Py = k(o) <5 - (A3)

(A4)

a(o) = 0.025 + 26.14¢7 — 34.5645 + 33.92¢5.  (AS)

In Fig. 7, ¢SEPC is shown as a magenta dashed line.
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