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ABSTRACT: Coarse-graining is a molecular modeling technique in
which an atomistic system is represented in a simplified fashion that
retains the most significant system features that contribute to a target
output while removing the degrees of freedom that are less relevant.
This reduction in model complexity allows coarse-grained molecular
simulations to reach increased spatial and temporal scales compared
with corresponding all-atom models. A core challenge in coarse-
graining is to construct a force field that represents the interactions
in the new representation in a way that preserves the atomistic-level
properties. Many approaches to building coarse-grained force fields
have limited transferability between different thermodynamic
conditions as a result of averaging over internal fluctuations at a
specific thermodynamic state point. Here, we use a graph-convolutional neural network architecture, the Hierarchically Interacting
Particle Neural Network with Tensor Sensitivity (HIP-NN-TS), to develop a highly automated training pipeline for coarse-grained
force fields, which allows for studying the transferability of coarse-grained models based on the force-matching approach. We show
that this approach yields not only highly accurate force fields but also that these force fields are more transferable through a variety of
thermodynamic conditions. These results illustrate the potential of machine learning techniques, such as graph neural networks, to
improve the construction of transferable coarse-grained force fields.

■ INTRODUCTION
Molecular simulations elucidate the microscopic physical
processes that give rise to a physical system’s function and
behavior. One of the principal components that determines the
accuracy of a molecular simulation is the force field, a
mathematical model that calculates the forces acting on the
particles in the system as a function of their positions, i.e., the
interatomic forces. Force fields are typically constructed and
calibrated by a combination of top-down parametrization
techniques (so that a simulation reproduces known properties
of the target system such as structural, thermodynamic, and
dynamical properties measured in experiments) and bottom-up
techniques (by fitting to forces generated using first-principles
calculations1−6). Molecular models with well-parametrized
force fields enable the determination of key physical and
chemical properties needed by researchers in a variety of
domains such as chemistry, materials science, and biophy-
sics.3,7−9 These properties are generated by extracting
observable quantities from the results of a simulation using a
variety of sampling techniques.10,11

Even with a force field in hand, performing molecular
simulations can incur a significant computational cost,
primarily because large numbers of atoms are often required
in order to understand a system’s collective behaviors and
statistical properties, and time scales associated with processes
of interest can be far longer than the time scales on which
atoms themselves evolve. Many techniques have been
developed to bridge this gap between atomistic and
experimental scales, for example, Accelerated Molecular
Dynamics,12 enhanced sampling methods such as metady-
namics,13 and correlation function approaches to thermody-
namic information such as using the Bogoliubov−Born−
Green−Kirkwood−Yvon (BBGKY) hierarchy.14 To ameliorate
the computational cost associated with simulating a system at
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an all-atom (AA) level, the system can be redefined by using a
coarse-grained (CG) representation in which some of the
atomistic degrees of freedom are removed to reduce the overall
model complexity. Specifically, coarse-graining is a molecular
modeling technique in which collections of atoms with highly
interrelated behavior are reduced to single particles.1,15−26 By
neglecting and removing the internal dynamics of the atoms
within each group, CG models increase computational
efficiency and allow simulations to be performed on increased
spatial and temporal scales. Coarse-graining has been shown to
be capable of reproducing the structural and thermodynamic
properties of a broad class of systems including molecular
liquids,1,27−30 polymers,31−34 and proteins.9,15,16,18

A limitation of traditional coarse-graining techniques and the
corresponding force fields used to perform the CG simulations
is transferability; that is, CG models are optimized at a specific
thermodynamic state point but perform poorly outside of
those conditions.35 The transferability problem arises because
the effects of the removed degrees of freedom are themselves a
function of thermodynamic conditions.36 Researchers are
attempting to tackle the transferability problem in coarse-
graining using a variety of techniques, including inverse Monte
Carlo methods,37 extended ensemble approaches,38,39 and
integral equation methods,40 among others. A related approach
is to use machine learning (ML) methods that target
thermodynamic consistency41−43 to build data-driven CG
models that are transferable across thermodynamic conditions.
These CG models aim to retain statistical consistency across
scales and satisfy known relations between thermodynamic
variables and their derivative quantities. Transferability in CG
models has been explored, for example, in the context of
matching AA configurations across phases, interfaces, and
thermodynamic conditions by accounting for both energetic
and entropic effects in the CG space.44−47 Developing
transferable CG models using ML is currently an open and
active research area. As applications of ML in coarse-graining
expand, it is important to assess if CG models developed using
data-driven approaches can improve current methods that seek
accurate force field transferability through, for example, the
inclusion of correction terms or fitting to properties other than
a single structural observable. Using ML to mitigate the need
to develop CG force fields that rely on quantities averaged
across thermodynamic state points is a potential advantage.
The flexibility of ML methods can also potentially improve
force field generalizability so that a CG model developed on

one class of system/molecule can be applied to a different
class.
The development of AA and CG force fields is a complex

task that involves selection of functional forms, creation and
curation of data, optimization of parameters, evaluation of
preliminary models, and tuning of hyperparameters (such as
cost functions weights) associated with fitting.48 Recently,
approaches using ML methods have been applied to build
many-body models of atomistic3,7,8,49,50 and coarse-
grained34,51−53 forces with increased flexibility in comparison
to traditional methods. These approaches allow for tight
matching with reference data but introduce even more
hyperparameters to the model and fitting procedure, further
complexifying the automation of force field development.
Machine learning techniques such as neural networks54−57 and
active learning58 have been applied to increase the accuracy
and reduce the complexity of developing CG force fields.
Machine leaning applications in coarse-graining include
implicit solvation models59 and the prediction of solvation
energies.60 While including many-body interactions and effects
of those interactions in CG force fields may improve the
accuracy of a CG model, it is more difficult to optimize a
complex many-body functional form with simple fitting
approaches, e.g., using serial updates to single parameters at
a time. Machine learning, however, can provide a computa-
tionally tractable approach to quickly fit many-body CG forces
when sufficient data are available. The inclusion of many-body
forces often results in a better reproduction of the AA
configuration distributions.60−63

One common goal in coarse-graining is to maintain
thermodynamic consistency between length scales while at
the same time realizing the transferability of the CG model
across thermodynamic states. This multiobjective optimization
is often difficult to realize in practice, however, principally
because the multiscale nature of the CG procedure gives rise to
nontrivial operations in the construction of force fields and
associated mappings between length scales that maintain
thermodynamic consistency. Machine learning models are
often able to accurately describe a system’s behavior over a
wide range of thermodynamic states due to the flexible form of
the interpolating functions used in ML, for example, neural
networks. Advances in ML applied to coarse-graining have
been made in parallel with advances in AA force field
development using ML-based methods.3,7,8 However, the
application of ML to develop transferable CG force fields is
currently a complex task with many open questions.

Figure 1. Illustration of the workflow used to create and analyze the ML CG models.
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In this paper, we present an ML CG workflow to construct
force fields based on the force-matching (or multiscale coarse-
graining) approach64 using the Hierarchically Interacting
Particle Neural Network with Tensor Sensitivity (HIP-NN-
TS)65,66 architecture, which has previously only been applied
to AA systems. We show that this workflow is robust in that it
is able to consistently build a large number of accurate CG
models for a variety of chemical physics systems across many
thermodynamic state points in a single phase on the phase
diagram. We then use these models to study transferability of
the many-body ML CG approach. We compare these results to
two-body effective potentials using the recently developed
OpenMSCG67 software. We find that the ML CG approach is
more consistently accurate, can take advantage of additional
training data, and produces more transferable models across
varying temperature. We furthermore study several molecules
across temperature and density variations, comparing single-
state-point models with models produced by training to all
available data and find that both types are surprisingly
transferable even as systems undergo large changes in their
structural ordering.

■ METHODS
In this section, we describe training data generation, the ML
model architecture, the training procedure, and evaluation
methods used in this work. An overview of the workflow is
shown in Figure 1.

Coarse-Graining. We use a typical coarse-graining frame-
work in which collections of atoms in an AA system are
mapped to CG beads, and internal degrees of freedom in each
collection of atoms are removed from the CG model. With this
aim, a mapping from the AA configuration space to the CG
resolution is selected. We use a bottom-up approach to
construct the corresponding CG force field, which is defined to
preserve the configuration probability density from the AA
space in the CG space.68 The relation between the
configuration probabilities in each representation is

= [ ]P PR r r R dr( ) ( ) ( )CG AA (1)

where r = {r1, r2,..., rn} represents the positions ri for atoms 1 ≤
i ≤ n in the AA space, R = {R1, R2,..., RN} represents the
positions RI for CG beads 1 ≤ I ≤ N, represents the
mapping function from r to R, and PCG and PAA represent the
respective CG and AA configuration probability densities. For
the canonical ensemble generated by an AA energy EAA at
inverse temperature β, this equation can be cast in terms of a
f ree energy function ECG as

[ ]e e r R dr( )E ER r( ) ( )CG AA

(2)

This free energy function is a potential of mean force (PMF), in
that the CG forces derived from it should match the force
averages across all possible atomistic configurations corre-
sponding to each CG configuration, based on the selected
mapping .
Herein, each CG bead represents the atoms that compose a

single molecule and we invoke the common center-of-mass
mapping to construct the CG representation. For a discussion
of other popular mapping choices, see ref 14. We define the
mass MI of a bead I as a sum of the masses mi for each atom i
in the corresponding molecule as

=
=

M mI
i

n

i i I
1

,
(3)

where Δ is an indicator for which atoms correspond to which
bead,

= i I1 atom is in molecule
0 otherwisei I,

lmoo
no (4)

The CG bead coordinates RI are calculated from the AA
configurations using the center of mass position,

= = = m

M
R r

r
( )I I

i
n

i i i I

I

1 ,

(5)

Also required is a mapping from AA forces f = {f1, f2,..., fn}
to CG forces F = {F1, F2,..., FN}. Ciccotti, Kapral, and Vanden-
Eijnden69 derived a set of criteria for that guarantees that the
corresponding free energy function ECG is consistent with eq 1.
Summarily, while may be nonlinear in r, it must be linear in
f, and must serve as an inverse of the AA gradient of the
coordinate mapping, r , when contracted over the AA
indices. A simple choice consistent with this criteria is to define

so that FI is the sum of forces fi for atoms i in bead I, i.e.,

= =
=

F f f( )I I
i

n

i i I
1

,
(6)

Using these CG mappings, for each frame of data, F provides
an unbiased estimator of the negative derivative of the CG free
energy ECG with respect to the coordinates R.

Model Architecture. To build the CG free energy
function ECG, we applied the Hierarchically Interacting Particle
Neural Network with Tensor Sensitivity (HIP-NN-TS).66

HIP-NN-TS is a graph-convolutional neural network
(GCNN); the convolutions, implemented in an interaction
layer, make the model invariant under rotations, translations,
and permutations of the atoms in the simulation. The tensor-
sensitivity component builds upon the original model65 by
introducing many-body features into the individual neurons of
the interaction layer.
We adapted the open-source hippynn70 codebase that

implements HIP-NN-TS to take bead positions as inputs
rather than atom positions. The models then predict the free
energy of the system based on the bead configurations. The
force on each bead is calculated as the negative gradient of the
predicted free energy with respect to the bead positions using
automatic differentiation.71 Using the language of ref 66, the
ML CG models developed here use tensor order = 2 and
contain nint = 1 interaction layer, natom = 3 atomic environment
layers, nν = 20 sensitivity functions, and nfeature = 32 atomic
features per layer. These hyperparameters were determined
through trial and error during a preliminary phase of the study
based on values, which had shown success in previous HIP-NN
networks used for atomistic simulations.65,66 A posthoc
analysis, described further in the Supporting Information
section Neural network hyperparameter investigation, indicates a
good deal of flexibility in selecting these hyperparameters
without significantly diminishing the quality of the results.
In addition to the neural network component of the free

energy, a short-range pairwise-repulsive potential was added to
the models. The data used to train the models comes from
equilibrium simulations in which there is an effective lower
bound on intermolecular distance, r. Without the addition of
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the repulsive potential, the models can generate unphysical,
untrained predictions for the forces between pairs of beads
whose distance is less than r, due to the lack of data. Without
the repulsive term, the GCNN potential would have a
significant uncertainty in the small-r region. This is because
those configurations are not seen in the training data and,
without the replusive term, small interparticle distances would
constitute significant extrapolation for the potential. By
including the repulsive term, we add a physics-based term
(in contrast to the ML-based component) that alleviates the
sampling problem. This is a common technique to employ in
such a situation, although the exact forms of the short-range
potentials vary.54,,73 The repulsive potential improves the
stability of the model because extrapolation of the potential to
small interbead distances is no longer performed. The repulsive
potential ensures that any two beads separated by less than r
are repelled. The repulsive potential is of the form

=E r E( ) e ar
rep 0 (7)

where r is the distance between the pair of beads, and E0, a > 0
are parameters set based on the specific system. Importantly,
because the pairwise potential pertains to the lack of data, it is
necessary to set E0 and a before training the neural network.
The procedure used for identifying E0 and a is detailed in the
Supporting Information section Repulsive potential parametri-
zation details. We emphasize that the repulsive pair potential
significantly improves the stability of learned ML CG models
during simulations, resulting in a highly automated workflow.
Example scripts for training such a model and for using the

resulting model to run coarse-grained MD are included in the
open-source hippynn70 repository.

Training. For the methanol comparison study, we follow
the data generation scheme described in an OpenMSCG
tutorial74 for building CG models of methanol. The molecular
dynamics suite GROMACS75 is used to generate 100,000 time
steps of 1 fs each of a box with 1728 methanol molecules under
periodic boundary conditions. Every 100th step is saved,
resulting in 1000 AA frames. The topology and initial
coordinates are downloaded from the GROMACS webpage
and the OPLS-AA76 force field is used. The simulation is run in
the canonical ensemble using a Nose−́Hoover thermostat.
For the cross-molecular study, we use the LAMMPS77

software package with the all-atom (i.e., nonconstrained)
GROMOS-54A778 force field to simulate three molecular
fluids: methanol, benzene, and methane across a variety of
temperatures and densities above the critical temperature for
each molecule. The molecular topologies were obtained using
the Automated Topology Builder (ATB) and Repository.79,80

PACKMOL81 was used to generate initial coordinates, and
Moltemplate82 was used to generate LAMMPS input files. We
performed MD simulations in the canonical ensemble using a
Nose−́Hoover thermostat. Each simulation contained 1024
molecules, and the density was controlled using cubic boxes of
various size with periodic boundary conditions. Following an
equilibration procedure, each MD simulation consisted of
50,000 time steps of 1 fs. Every 50th frame was recorded,
totalling 1000 frames.
For both studies, after generating the AA data, the mappings
of eq 5 and of eq 6 were applied to each frame to create

the training data for the ML CG models. For the methanol
comparison study and the cross-molecular study, we trained
single-state models using data from a single-state point (i.e., for
each temperature and density combination). These single-state

models are then applied using MD at the same state point to
which they were trained to establish a baseline. They are also
applied with MD at other temperatures and densities to test
their transferability. For the cross-molecular study, we also
trained a multistate model for each molecule using combined
data from every state point and tested it using MD at each of
those state points. Figure 2 shows an illustration of these three
different test schemes.

The multistate data sets are the same size as the single-state
data sets, built by evenly subselecting the frames from each
state point. In each case, 1000 frames of training data are split
randomly into 800 training frames, 100 validation frames, and
100 testing frames. The loss function used to train the ML CG
models was the sum of the root-mean-square error (RMSE)
and mean absolute error (MAE) for the model predictions
versus the training data values of the forces for each
configuration in the data set. Both the MAE and RMSE
were included in the loss function because the combination
was found to be successful in prior works.65,66 A posthoc
investigation, described in the Supporting Information section
Neural network hyperparameter investigation, suggests that using
RMSE but not MAE (as prescribed by the MS-CG formalism
and corresponding PMF) to train a model has minimal impact
on the radial distribution function (RDF) and angular
distribution function (ADF) error presented later.

Performance Evaluation. We measure the accuracy of
CG models by how well they reproduce statistics from the AA
models in accordance with eq 1. In particular, the RDFs
measured during MD simulations using the CG models were
compared to the RDFs generated from the AA MD
simulations. The RDF, denoted by g(r), describes the statistics
for finding a particle at a distance r from a randomly chosen
particle. It is normalized so that an RDF is asymptotically one
for large radii by defining the RDF as the ratio between the
local density variations and the bulk density.83 The RDF is a

Figure 2. Illustration of the three types of tests performed on the ML
CG method.
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key structural metric used in characterizing the degree of local
ordering in a system. It can be determined using theoretical,
computational, or experimental approaches and can be used to
derive much thermodynamic information about a system.83−87

In this work, AA RDFs are computed using molecular centers
of mass, and CG RDFs, correspondingly, are computed using
bead positions. As a ratio between densities, the RDF has no
units; we denote this as (−) in the figures.
In order to construct the CG RDFs, we performed CG MD

simulations in the canonical ensemble. The initial positions for
these simulations were taken from a random frame of the
model training data at the appropriate temperature and
density. After equilibrating the CG system, 50,000 time steps
of 1 fs each were run, and each 50th frame was recorded. The
RDFs were computed from these 1000 frames of data. The AA
RDFs were taken from the AA training data, which was also
performed using canonical ensemble MD as detailed in the
Training subsection.
To quantify the difference between the AA and CG RDFs,

we use the total absolute error (TAE). The TAE is the total area
between two curves, i.e.,

= | |g g g g rTAE( , ) d1 2 0 2 1 (8)

For the calculations in this paper, we used a finite sum
approximation of TAE. Specifically, we used

| |
=

g g g r g rTAE( , ) ( ) ( )
i

n

i i r1 2
0

2 1
(9)

where {rj} represents a sequence of distance values, evenly
spaced between r0 = 0 and an appropriately chosen rn = rmax >
0, with width Δr between each pair of successive values. We
chose to compute the TAE between RDFs rather than the
MAE between RDFs because the RDF TAE is not strongly
sensitive to the choice of upper cutoff rmax of the RDF radius,
whereas the RDF MAE is.
Additionally, we compare the ADFs from the ML CG MD

runs to those from the AA MD simulations. The ADF of a
trajectory describes the distribution of angles between triplets
of points in each frame of a trajectory. This higher-order
structural function provides further insight into the arrange-
ments of particles in the trajectory beyond what is contained in
the RDF. More precisely, the ADF is the probability
distribution of angles in the range [0°, 180°] where each
angle is formed by a central particle to two neighbors, where
both arms of the angle from the central particle have length
less than a set cutoff distance rmax. In general, higher values of
rmax will produce less structured ADFs, as the behavior of
particles at greater distances from one another is less
correlated. As with the RDF, the ADF is a ratio and hence
has no units, which we denote as (−) in the figures. Unlike the
RDF, for the ADF, either TAE or MAE can be appropriate to
quantify the difference between two histograms, as the range of
values for which the distribution is defined is fixed at [0°,
180°]. We use the ADF MAE here, again approximated by a
finite sum, which is dimensionless.
A usual method for evaluating ML models is to compare

predicted model outputs (forces, in our case) with the
corresponding true values from test data withheld during

Figure 3. Subfigures (a, b) show a comparison of methanol RDFs generated using (1) a reference AA simulation, (2) the MS-CG technique, and
(3) the single-state ML CG models. These RDFs were generated at (a) 200 K, density 0.77 g/cm3 and (b) 400 K, density 0.77 g/cm3. Subfigure (c)
summarizes the corresponding results across 11 temperatures. Subfigure (d) shows the transferability of a single-state model for each method, each
trained with 300 K data.
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training. However, for the CG problem here, the training data
F is a statistical distribution of forces, whereas the model
predicts the mean of this distribution, ⟨F⟩; as a result, there is
intrinsic noise in the loss function.88 For this reason,
conventional metrics are not easily usable for assessing the
quality of the ML CG model. Nevertheless, several conven-
tional metrics for the performance of the models are reported
in the Supporting Information section, Training statistics.

■ RESULTS
In this section, the performance of the ML CG models is
explored. Both single-state models, those trained using data at a
specific temperature and density, and multistate models, those
trained using data from a range of temperatures and densities,
are discussed.

Methanol Comparison Study. To establish a baseline for
the ML CG approach, we compared it to the recently released
OpenMSCG software for coarse-graining methanol.67

OpenMSCG is based upon methods proposed by Izvekov
and Voth1,89 and later further developed and generalized by
others including Noid et al.64,68,90 The OpenMSCG software
provides a set of force-matching routines that implement a

bottom-up coarse-graining method that calculates the effective
CG interactions by minimizing the difference between CG
forces and reference AA forces; this is quite similar to our
workflow and uses the same coordinate and force mappings.
The main difference is that OpenMSCG uses a pairwise force/
energy function between beads instead of a GCNN.
The resulting RDFs for this comparison are given in Figure

3. Both methods perform well, with the ML CG method
exhibiting significantly lower error at lower temperatures, as
shown in Figure 3a for 200 K. These results illustrate that, in
general, we expect the neural network-based methodology to
result in CG force fields that perform as well as or better than
those constructed using force-matching when applied to data
at a specific state point. Figure 3b shows the results for
methanol at 400 K. In this case, the OpenMSCG and ML CG
methods give very similar and excellent overall accuracy. As
such, in this case, there is only a limited potential for
improvement over the OpenMSCG model. We performed this
study for a range of temperatures from 200 to 400 K, with the
overall RDF TAEs presented in Figure 3c. At lower
temperatures, the ML CG models perform substantially better
than the OpenMSCG models. As the temperature is increased,

Figure 4. Comparison of methanol ADFs generated using (1) a reference AA simulation, (2) the MS-CG technique, and (3) the single-state ML
CG models. Subfigures (a), (c), and (e) show ADFs for 200 K, density 0.77 g/cm3 with ADF cutoff values rmax of 4, 5, and 6 Å respectively.
Subfigures (b), (d), and (f) show ADFs for 400 K, density 0.77 g/cm3 with the same respective cutoff values.
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the difference between the two methods is less pronounced. In
the temperature range 340 K−380 K, the OpenMSCG method
is slightly more accurate, although the difference between the
methods is relatively small. The models shown in Figure 3c
were trained by using 1000 frames of training data. In the
Supporting Information, Figure S2, we show similar results
constructed using 10 and 100 frames of training data. With far
fewer data, the advantage of ML CG over OpenMSCG is less
pronounced; we find the performance of OpenMSCG saturates
more quickly as the data set size is increased.
When comparing the ADFs generated with the OpenMSCG

method and the ML CG method against the AA reference data,
as shown in Figure 4 and Figure 5 parts (a), (c), and (e), we
see again that the ML CG models perform better or similarly
to the OpenMSCG models in every case. The difference is
most stark for the ADFs generated with a cutoff value rmax = 4
Å, where the ADFs are most structured. The MAE between the
OpenMSCG ADFs with the reference AA ADFs is around
twice that for the ML CG models at every temperature tested.
When the ADF cutoff value rmax is increased to 5 or 6 Å, this
difference largely disappears, and both methods reproduce the
ADFs very closely.

To understand the transferability of the models, we applied
the single-state model learned at 300 K for each method to a
range of temperatures and recorded the TAEs of the resulting
RDFs in Figure 3d. In both cases, the model produces lower
RDF errors in the vicinity of the training state point, and the
TAE rises smoothly at higher and lower temperatures.
However, the ML CG model shows a significantly lower
RDF TAE compared to OpenMSCG when applied at
temperatures further from the training state point. At
temperatures lower than 300 K, the TAE for the ML CG
models is approximately a factor 2 lower in comparison to
OpenMSCG. The corresponding ADF errors are show in
Figure 5 parts (b), (d), and (f). For cutoff value rmax = 4 Å
(subfigure (b)), the MAEs for the ML CG ADF are
approximately half the MAE for the OpenMSCG model at
each temperature. For cutoff value rmax = 5 Å (subfigure (d)),
this difference is lessened but the ML CG model still slightly
outperforms the OpenMSCG model in every case. Finally, with
cutoff value rmax = 6 Å (subfigure (f)), the MAE error values
for the OpenMSCG ADFs are nearly identical to the ML CG
error values for temperatures between 300 and 400 K, while

Figure 5. Summary of ADF comparisons for the MS-CG technique and the ML CG technique against a reference AA simulation. Subfigures (a),
(c), and (e) show results for the single-state baseline models using cutoff values rmax of (a) 4, (c) 5, and (e) 6 Å. Subfigures (b), (d), and (f) show
results for the single-state transferability test using the 300 K model for each method with ADF cutoff values rmax of (b) 4, (d) 5, and (f) 6 Å.
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the OpenMSCG errors are closer to double that of the ML CG
models at temperatures from 200 to 280 K.
The primary difference between the ML CG method and the

OpenMSCG method is that the ML CG models incorporate
many-body effects, while the OpenMSCG methods are
pairwise. These results illustrate how accounting for many-
body interactions may be relevant to producing more
transferable CG force fields.

Multimolecule Study. To further study thermodynamic
transferability in ML CG models, we applied the ML CG
method to several molecules (methanol, benzene, and
methane) across a range of temperatures and densities, as
described in the Training subsection.
Figure 6 shows examples of the RDFs generated by using

single-state models for methanol, benzene, and methane. Each
subfigure shows a reference AA RDF computed using
molecular centers-of-mass for atomistic MD data generated
at the same temperature and density. There is excellent
agreement between the AA and CG RDFs in each case,
illustrating that the ML CG models accurately capture the
shape and magnitude of the RDF peaks for each of the
examined molecular fluids.
Figure 7 shows the results of three workflows for all three

molecules studied across the nine state points used for each
molecule. First, the single-state models are used to provide a
baseline of a usual CG approach that trains and tests at the
same thermodynamic state point (denoted single-state (base.)
in the figure). Second, for each molecule, the single-state
model trained at the center state point is applied to each of the
test state points (denoted single-state (trans.)), providing a
picture of the transferability of the ML CG model when
extrapolating through thermodynamic state space. Finally, the
multistate model is applied to each state point (denoted
multistate (trans.)) to test whether training to all state points

provides improved transferability characteristics (for details,
see the Training section). Each molecular fluid was studied at
three densities (shown in three panels) and three temperatures
(shown on the vertical axis of each panel) in Figure 7. The
error bars show the standard deviation calculated across five
trials, where, in each trial, several factors were randomly varied:
the train/valid/test split for the data used to create the ML CG
model, the initial weights of the HIP-NN-TS network, the
initial frame for the ML CG dynamics, and the random
number seed used for the thermostat. Of the 405 trajectory
comparisons used to create this figure, some of those with the
highest TAEs are shown in Supporting Information Figure S5.
The findings for the single-state baseline test were consistent

for all three molecules. For methanol (Figure 7a), we observe
that the single-state models generate similar, very low (<0.25
Å) TAE values over all the densities and temperatures studied.
For benzene (Figure 7b), the average TAE is good (<0.45),
although somewhat higher than methanol, but again, single-
state models produce fairly consistent TAE values across all
state points. For methane (Figure 7c), the single-state models
perform best at the lowest temperature and highest density
studied. This is an interesting observation because at this state
point, we expect the RDF to have the most structure and
stronger correlations at larger r values in comparison to, for
example, higher temperatures and lower densities. For the
high-density state points, the ML CG model for methane
performs worse as the temperature is increased. Overall, the
results in Figures 6 and 7 illustrate that the ML CG
methodology developed in this paper can be applied to
construct CG free energy functions that generate RDFs in
strong agreement with AA results.
For the transferability test of the single-state models, the

results show a surprising level of transferability for ML CG
models; in general, the TAEs for this test are almost always

Figure 6. Baseline comparison of reference RDFs generated from AA MD against RDFs generated via an ML CG single-state model for (a)
methanol, (b) benzene, and (c) methane.
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within a factor of 2 of the baseline single-state performance,
with the exception of high-temperature, high-density methanol.
Even more surprising, for several state points, the single-state
transferability performance is actually superior to the baseline
models. Another observation is that significant variance
between runs can be observed for high-density benzene.
Under more careful examination, these models produced
slightly understructured RDFs, and the variance between
models is explained by the degree of under-structuring. A
similar but less pronounced effect is visible for high-density
methanol, where some variance appears for the single-state
transferability model. In this case, the RDFs were not
definitively under- or overstructured. Despite these fluctua-
tions, the RDF quality is still reasonable.
Like the single-state transferability tests, the multistate

models exhibit remarkable transferability, in some instances
even performing better than the single-state models. The
higher variance observed in the single-state transferability tests
for benzene was significantly reduced. More detailed
investigation of the underlying RDFs demonstrates that the
multistate ML CG models reproduce the AA statistics even
through relatively large changes in the structural ordering of
the fluid. Figure 8 shows the most extreme state points (high-
density, low-temperature, and low-density, high-temperature)

with respect to structural ordering. All of the molecules
undergo significant changes in structural ordering across the
space of thermodynamic states. We also tested whether the
multistate model can be productively applied to state points
not present in the training data. We examined this for
methanol by generating AA ground truth at two intermediate
densities and two intermediate temperatures, yielding four new
state points. The results of the multistate model at these
previously unseen points are shown in Supporting Information
Figure S4 and demonstrate that the performance of the model
does not significantly change when it is applied to intermediate
state points not seen during training.
Further, when comparing ADFs generated using AA MD

against the ADFs generated with the ML CG method, we see
strikingly similar results. ADFs from selected multistate
transferability tests are shown in Figure 9, with the results
pictured in each subfigure coming from the same trial as the
results in the corresponding subfigure in Figure 8. Each
subfigure shows the ADFs corresponding to several choices of
the ADF cutoff value rmax. The only pictured case in which
there is visible deviation from the reference ADFs is for
methanol at 800 K with density 0.85 g/cm3, where the ADFs
for cutoff values rmax of 4, 5, and 6 Å exhibit slightly less
structure than the corresponding reference ADFs. The ADF

Figure 7. Total absolute error (TAE) between RDFs generated by AA MD and those generated by using various ML CG models for (a) methanol,
(b) benzene, and (c) methane. The horizontal placement of the markers has been offset slightly for visual clarity. The error bars show the standard
deviation calculated by constructing five ML CG models randomly sampled as described in the text.
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results for all molecules, tests, and state points at selected
cutoff values are displayed in Figure 10. Several of the ADFs
with the highest MAE values among those captured in this
figure are provided in Supporting Information Figure S6. Many
similarities to the RDF results shown in Figure 7 can be found.
For each molecule, the single-state baseline test results were
largely consistent for each molecule. For methanol (Figure
10a), the ADF MAE values are around 0.02 for each
temperature and density combination. For benzene (Figure
10b), the ADF MAEs are again all near 0.02, with slightly more
fluctuation between state points than what was observed for
methanol. Finally, for methane (Figure 10c), the ADF MAEs
range from around 0.01 to 0.02, with improved performance as
the density increases. These results provide further evidence
that the single-state ML CG models can closely replicate the
structure of the AA trajectories used to train them.
Figure 10 also shows the ADF MAEs for the transferability

test of the single-state models. Again, the results further
support the claim of the transferability of these single-state ML
CG models. In many instances, the ADF error for the
transferability test model is nearly equivalent to the ADF error
for the single-state baseline model. The largest increases in

ADF error when performing the transferability test were for
benzene at 1.06 g/cm3, the highest density tested, followed by
methanol at 800 K and 1.27 g/cm3 and at 600 K and 0.85 g/
cm3. In all cases, the ADF MAE is no more than three times
the baseline result.
Finally, Figure 10 includes the results for the multistate

transferability test ADFs. We observe very similar results for
the multistate and single-state transferability tests in almost
every instance, with the highest error for the multistate
transferability test ADFs being for benzene at 1.06 g/cm3,
followed by several temperature and density combinations for
methanol. Again, in each instance, the ADF MAE is no more
than three times the baseline result. And just as observed with
the RDF errors, there is fluctuation between whether the
single-state or multistate transferability test results are better.
This finding reinforces the claim of transferability of both the
single-state and multistate ML CG models across temperature
and density.
The ML CG workflow produces accurate models for a range

of molecules and state points without tuning. The main
parameter that might be adjusted is the interaction radius of

Figure 8. Comparison of reference RDFs generated by AA MD against RDFs generated via the ML CG multistate model for (a) and (b) methanol,
(c) and (d) benzene, and (e) and (f) methane. The state points represented are the leftmost and rightmost pictured in Figure 7 for each molecule,
which have, respectively, the most and least structured RDFs.
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the HIP-NN-TS architecture, but in this work, a uniform
interaction distance of 12 Å was used for all molecules.

Computational Cost. Computation times for ML CG
training and MD are affordable enough to enable high-
throughput analysis. In the multimolecule study, for benzene
and methane, training the ML CG models and running MD
with the trained model each consistently took less than 30 min
with a single NVIDIA A100 GPU. For methanol, each took
consistently under one h with the same architecture. As a
result, in the course of this work, we were able to train more
than 150 models and to run more than 400 MD simulations.
Scientifically, the most important aspect of automating these
simulations was the addition of the repulsive potential
determined as a pretraining step.
For the results in the Methanol Comparison Study

subsection above, the ML CG method takes about 45 min
to run 100,000 steps on 1728 beads, whereas the pairwise
OpenMSCG method takes a few minutes to run 100,000 time
steps. Given the extremely optimized implementation of
pairwise tabular potentials in LAMMPS, a factor of about 20
between the OpenMSCG example and ML CG potential is
better than expected.

We also performed a comparison of our ML CG models to
the AA HIP-NN-TS models of ref 66 using a periodic box of
1024 methanol molecules. The AA ML potential could
compute the forces in approximately 0.3 s on average, where
the CG potential could compute the forces in approximately
0.04 s on average. There is also a factor of 4 between the
typical time step for AA MD with an ML potential (0.25 fs)
and the time step used here (1 fs), leading to an overall 30
times faster simulation capacity with the ML CG method.
All coarse-grained MD simulations in this manuscript were

performed using a time step of 1 fs. A time step of between 0.5
and 2 fs is common for coarse-grained neural network models.
For example, ref 91 uses 2 fs and ref 92 uses 2 and 0.5 fs
depending on the model. We tested a time step of 5 fs for one
MD run of each type (single-state baseline, single-state
transferability test, and multistate transferability test) for
each of the nine methanol temperature/density combinations
used in the Multimolecule Study subsection. We tested energy
conservation using this 5 fs time step, which was satisfactory in
17 of the 27 models. The models that failed to achieve energy
conservation were mostly for high-density or high-temperature
configurations. Improving the dynamics of the ML CG models

Figure 9. Comparison of reference ADFs generated by AA MD against ADFs generated via the ML CG multistate model at several different cutoff
values rmax for (a) and (b) methanol, (c) and (d) benzene, and (e) and (f) methane. The cutoff values used are 4, 5, 6, and 7 Å for methanol; 6, 7,
8, and 9 Å for benzene; and 5, 6, 7, and 8 Å for methane. The smaller cutoff values in each case correspond to the more structured ADFs.
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could increase their ability to conserve energy with larger time
steps at high densities and temperatures, allowing for an even
greater speedup when compared with AA CG methods.
Overall this indicates that our overall speedup factor over all-
atom HIP-NN-TS can thus be estimated as in the range 30x to
150x.
Of course, there are many other factors which will affect this

number, variations in the network architecture hyperpara-
meters, the overall number of particles considered (1024
particles in the CG simulation does not typically saturate the
GPU) and, perhaps most importantly, variations in the number
of atoms which are coarse-grained over. In regards to this last
factor, methanol has a 6-to-1 ratio between atomistic and CG
representations, but benzene has a 12-to-1 particle ratio
between atomistic and CG representations and furthermore
has fewer neighbors in the same interaction radius, leading to
reduced cost for message-passing operations in the neural
network.

■ CONCLUSIONS
In this work, we built an ML CG workflow based on the
bottom-up approach of Multi-Scale Coarse-Graining, for the
first time using the Hierarchically Interacting Particle Neural

Network (HIP-NN)65,66 with the aim of studying the
transferability of coarse-grained models through varying
thermodynamic conditions. In order to produce a robust
workflow suitable for studying many molecules and state
points, it was important to include a pairwise-repulsive
potential with parameters set before training. Otherwise, the
workflow is very similar to training an AA potential using
(fluctuating) forces but not energies. As a result, we were able
to build more than 150 models and run over 400 MD
simulations with those models, exploring the accuracy of
models trained and used at the same state point, models
trained and used at different state points, and models trained
and used at multiple state points.
Our results show that the ML CG models here produce

more consistent structural accuracy (as quantified by the RDF
and ADF) than OpenMSCG pairwise CG models built using
the same data using liquid methanol at a variety of
temperatures. Furthermore, training a model at 300 K and
deploying it across the range of 200 to 400 K showed that the
ML CG model is also significantly more transferable than the
pairwise model. This is intriguing because although the neural
network is highly expressive, it is not obvious how it distills
many-body contributions to the CG free energy that make the

Figure 10. Mean absolute error (MAE) between ADFs generated by AA MD and using various ML CG models for (a) methanol (with a cutoff
value of rmax = 4 Å), (b) benzene (with a cutoff value of rmax = 6 Å), and (c) methane (with a cutoff value of rmax = 5 Å). The horizontal placement
of the markers has been offset slightly for visual clarity. The error bars show the standard deviation calculated by constructing five ML CG models
randomly sampled as described in the text.
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potential more transferable. This is even more surprising when
considering the inherent noise in force-matching, which
drastically reduces the model’s ability to match its training
data precisely. This stands in contrast to the construction of
AA potentials, where forces and energies can be matched
during training with extreme precision.
We furthermore applied the ML CG workflow to study

supercritical methanol, benzene, and methane across a range of
densities and temperatures to study transferability from a more
broad perspective. These conditions span significant variations
in structural ordering in the fluids. We found that while overall
model accuracy is superior using single-state models, models
transferred across thermodynamic states do not produce
extreme levels of error and in some instances appear to
paradoxically produce somewhat lower error than single-state
models. We also tested building force-matched models trained
across multiple state points. Although such a workflow violates
the thermodynamic assumptions of coarse-graining (as the CG
free energy is a function of temperature and density), there was
no difficulty in producing these multistate models, and they
performed very well. However, given the relatively surprising
level of transferability of single-state ML CG models, the
comparative advantage of training to multiple state points was
not strong. Multistate training did improve on the variance of
the RDF error for higher density methanol and benzene.
Finally, we estimated the speedup factor in the ML CG

models here over all-atom HIP-NN-TS potentials to assess the
computational leverage of coarse-graining. This analysis leads
to an estimate of 30x-150x speedup, with the large variance
being due to the time step used in the CG model, which could,
in many cases, have been pushed up to 5 fs. This shows that
ML CG models do, in fact, accomplish key cost-reduction
associated with coarse-graining. Simulation throughput can be
drastically improved while many characteristics of the under-
lying fine-scale (AA) system.
Although the ML CG models are able to reproduce the

structure of the AA trajectories with high accuracy, they do not
replicate the dynamics correctly. This is a known and widely
observed problem with coarse-grained models, which occurs
due to the smoothing of the potential energy surface and the
removal of friction effects. Techniques to address this issue are
currently in development.93−105

Another area for future work is to explore transferability for
cases of larger differences in structure, such as through phase
transitions, e.g., between crystal and liquid. It might be that in
this case, a multistate training procedure shows stronger
advantages. However, it is more difficult to automate training
data generation across thermodynamic phase changes, and this
challenge would need to be addressed. Additionally, there is a
wide variety of possible targets for coarse-graining, such as
proteins, macromolecules, alloys, and liquid mixtures, which
might be explored. Another future work possibility is to explore
the potential for nonequilibrium coarse-grained simulations.
Given the surprising transferability of these potentials, it may
be possible to accurately model near-equilibrium conditions
where temperatures and/or pressures evolve, either as a
function of time or over space given by some boundary
conditions. An exciting possibility is to incorporate additional
thermodynamics into the free energy function, essentially
applying the concept of thermodynamically consistent
learning43 to coarse-graining; such a concept has recently be
introduced and explored for the coarse-graining of hexane.106

With a wide range of recent improvements and ideas, machine

learning-based coarse-graining is poised to enable accurate
simulations on large length and time scales across a wider
range of thermodynamic conditions.
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