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Structure of a tractable stochastic mimic of soft
particles

Galen T. Craven, Alexander V. Popov and Rigoberto Hernandez*

The structure and assembly of soft particles is difficult to characterize because their interpenetrability allows

them to be packed at ever higher density albeit with an increasing penalty in energy and/or pressure.

Alternatively, the use of impenetrable particles (such as hard spheres) as a reference model for soft

particles can fail because the packing densities are limited by the impossibility of complete space filling.

We recently introduced the stochastic penetration algorithm (SPA) so as to allow for the computationally

efficient integration of hard sphere models while including overlaps seen in soft interactions [Craven

et al., J. Chem. Phys., 2013, 138, 244901]. Moving beyond the initial one-dimensional case studied

earlier, we now consider the spatial properties of systems of stochastically penetrable spheres in

dimensions d # 3 through the use of molecular dynamics simulations and analytic methods. The

stochastic potential allows spheres to either interpenetrate with a probability d or collide elastically

otherwise. For d > 0 the particles interpenetrate (overlap), reducing the effective volume occupied by the

particles in the system. We find that the occupied volume can be accurately predicted using analytic

expressions derived from mean field arguments for the particle overlap probabilities with the exception

of an observed clustering regime. This anomalous clustering behavior occurs at high densities and small

d. We find that this regime is coincident with that observed in deterministic penetrable models. The

behavior of the stochastic penetrable particles also indicates that soft particles would be characterizable

through a single reduced parameter that captures their overlap probability.
1. Introduction

The aggregation of small molecular motifs into macromolecular
structures gives rise to assemblies and materials with distinct
emergent behavior. For processes in which intermolecular
forces drive self-assembly, such as polymerization and colloidal
occulation, a theoretical formulation is oen intractable from
microscopic statistical mechanics due to the complex spatial
arrangements of the resulting compositions. The study of such
systems is oen relegated to purely computational methods,
but because of the large number of atoms of which they are
composed, macromolecules are difficult to simulate on relevant
biological and chemical length scales. The computationally
taxing procedure of simulating large systems can be accelerated
by reducing the atomic degrees of freedom to a coarse-grained
description.1–3 In the coarse-grained picture, macromolecules
can be treated as overlapping particles when so interaction
potentials allow them to interpenetrate relative to their radius
of gyration. The complex nature of so matter interactions is
manifested in systems with rheological and structural proper-
ties that are absent in simple uids.4–6 Previous modeling of so
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matter systems using a class of potentials that are nite valued
at the origin, bounded potentials, has elucidated the phase
behavior and structure of colloid suspensions,7 polymer-colloid
mixtures,8 star polymers and globular micelles,9 and
dendrimers.10

The generalized exponential model of index n (GEM-n),11,12

V GEMðrÞ ¼ 3 exp

�
�
�r
s

�n�
; (1)

is a prototypical bounded potential. The soness of the poten-
tial is specied by the parameter n. For the exponential
parameter value n ¼ 2, the GEM-2 becomes the Gaussian core
(GC) model.13 The potential (1) is nite valued at r ¼ 0 and this
gives rise to complex phase and thermodynamic behavior.14–16

In modeling solutions of micelles, Marquest and Whitten
introduced the penetrable sphere (PS) model,17

V PSðrÞ ¼
�
0; r. s ;
3; r# s :

(2)

The PS model is the limiting form of the GEM as n / N,
where s is the diameter of the particle and 3 is a nite energy.
Only as 3 / N does the PS model take the form of the ubiq-
uitous hard-core (HC) potential,18–21 otherwise the particles have
a non-zero probability to overlap due to the nite nature of the
This journal is © The Royal Society of Chemistry 2014
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energy barrier. For 3 ¼ 0 the PS model represents the ideal gas.
The PS model is perhaps the most well-studied bounded
potential. Its simplicity allows for the prediction of observables
of the system that in most cases are derivable using modied
HC arguments.22–28 As is common with the completely repulsive
HC potential, the PS model has been extended to include
attractive regions29–32 for the purpose of modeling complex
uids.

When particles are allowed to interpenetrate due to the
bounded nature of the potentials that govern their interactions,
the effective volume occupied by the particles in the system is
reduced from the non-overlapping value. The spatial properties
of such systems are of interest not only in macromolecular
assembly, but also in modeling the structure of porous
media.33–36 While the volume occupied by so-edge potentials,
like the GC model, is ill-dened due to the lack of a distinct
spatial boundary, the geometric properties of systems with
hard-edge boundaries are amenable to both analytic37–40 and
computer studies.41–44 In order to bridge the dynamics of a
system between completely hard and completely ideal behavior,
Blum and Stell45 introduced an abstraction of a bounded
potential, called the permeable-sphere model (PSM). Within
this model the radial distribution function g2(r) is constant in
the penetrative region (PR) 0 # r < s and equal to a penetration
parameter d,

g2(r) ¼ d. (3)

Thus, the PSM uses one parameter to bridge the limiting
behaviors.

In this article, a stochastic penetration algorithm (SPA)46 is
used to model penetrative particles. In the SPA, the outcome of
collisions between particles are governed by stochastic rules.
Through a penetration parameter d, a mixture of completely
hard and completely so interactions are constructed. The PSM
model can be equated to the SPA model only in the limit of
innite dilution. For nite densities, the mixing of stochastic
collision events in the SPA generates complex spatial congu-
rations and non-linear behavior for g2(r) in the PR and thus eqn
(3) does not hold. The dynamics of single-particle trajectories
evolved through the SPA are non-Newtonian as particles are
allowed to enter classically prohibited regions subject to the
outcome of a stochastic variable. However, by combining these
hard and so collision outcomes, the SPA generates ensemble
averages that retain the pertinent features of analogous deter-
ministic systems, such as the PS model.

In coarse-grained systems that are governed by imposed
Hamiltonian dynamical rules, the probability of entering a
repulsive potential region is dependent on the relative velocity
of the two colliding particles.25 If the relative velocity between a
colliding pair is below the respective energy threshold for that
region, the result is a turning point for so-edge potentials like
the GC model, or an impulsive elastic collision in hard-edge
potentials such as the PS model.

In the SPA model, the kinetic energy of a colliding pair plays
no role in the penetration process. A set of particles with a
relative velocity of small magnitude will sometimes overlap,
This journal is © The Royal Society of Chemistry 2014
traversing the now penetrable core. Moreover, a set of particles
with large kinetic energy can be repelled by the stochastic
collision outcome. The probability of penetration is thus
uniformly distributed over the entire energy distribution. The
ensemble average of these outcomes generates spatial cong-
urations that are analogous to those found by deterministic
bounded potentials such as the PS model. The effective pairwise
potential is determined by d. It replaces the detailed forces in
the interaction (or collision) region when moving from the all-
atom to CG representations. Thus the SPA is a HC model
augmented only by a single pairwise parameter, characteristic
of a particles soness, connecting deterministic systems gov-
erned by Newtonian mechanics to a stochastic system governed
by non-Newtonian mechanics.

When the particles are allowed to overlap, a fundamental
observable is the volume fraction f occupied by the particles in
the system. We nd that f can be predicted using probabilistic
arguments and that the system's structural behavior is
approximately that of deterministic so potentials. Thus, when
a system's degrees of freedom are coarse-grained, the repre-
sentative equations of motion can be considered probabilisti-
cally as well as deterministically. This result has direct
applications in modeling macromolecular assemblies where,
previously, deterministic bounded potentials have been utilized
to probe the spatial structure at the coarse-grained level.

The paper is outlined as follows: the numerical methods
used to simulate and measure the volume occupied by a system
of particles governed by a stochastic collision rule are described
in Section 2. Their structure can be characterized by the radial
distribution function g2(r). A mapping of g2(r) between the SPA
and so-particle systems is used in Section 3 to obtain a
correspondence between an SPAmodel withN-body penetration
parameter z to a so-particle system with pairwise soness d.
Analytic theories capable of predicting the occupied volume in
dimension d# 3 for SPA particles are presented in Section 4 and
tested by comparison between the results measured from
molecular dynamics (MD) in Section 5. Finally, in Section 6, we
conclude by summarizing the extent to which the SPA model
can be used to obtain structure and dynamics of corresponding
so-particle systems, and the extent to which coarse-grained
models can be enhanced through the use of the SPA.

2. Numerical methods
2.1 Model and simulation details

Dynamical simulations have been performed on a system of N¼
1000 spheres with each sphere having a massm and diameter s.
These simulations were performed in a d-dimensional periodic
hypercube with sides of length L. The volume of a single sphere
in dimension d is

vðdÞ ¼ pd=2

Gð1þ d=2Þ
�
s

2

�d

: (4)

The HC volume fraction f0 is the occupied volume fraction
of the system when no spheres overlap. In dimension d, the HC
volume fraction is
Soft Matter, 2014, 10, 5350–5361 | 5351
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f
ðdÞ
0 ¼ NvðdÞ

Ld
: (5)

If the spheres are allowed to overlap due to soness in the
governing potentials, f0 is an upper bound to the actual volume
fraction f, i.e., f # f0. In simulation, the box volume Ld is
changed to reach the target f0 value while keeping N constant.
In the SPA, penetrability is realized by using a single parameter
0# d# 1. The limiting values of this parameter, d¼ 0 and d¼ 1,
correspond to the HC and the ideal behavior limits, respectively.

The SPA algorithm is implemented as follows:
1. For every MD trajectory a value of the penetration proba-

bility d ˛ [0, 1] is preassigned and maintained throughout the
trajectory.

2. When a pair of spheres i and j collide at time tcol, a random
number aij(tcol) ˛ [0, 1] is generated from a uniform distribu-
tion. This random number determines, upon its comparison to
d, whether or not the pair of particles will interact. If aij(tcol) > d,
they interact via a hard potential; otherwise the particles
penetrate each other without interacting.

3. For the overlapping particles which do not interact, this
relationship between aij(tcol) and d is maintained until rij > s, i.e.
the zero interaction potential is kept until the pair breaks apart.

4. If the same pair of particles (i, j) undergoes a new collision
at time tcol + s, then a new random number aij(tcol + s) is
generated and the acceptance algorithm is repeated.

The SPA procedure generates the following stochastic
potential between spheres i and j:

VSPA
ij ðrÞ ¼

8<
:

0; r. s;
0; r# s and aijðtcolÞ\d;
N; r# s and aijðtcolÞ. d;

(6)

with the random number aij giving rise to the stochastic nature
of the interactions. The potential (6) is used to construct all
pairwise interactions in the SPA simulations.

When the stochastic interaction variable aij(tcol) < d the
particles penetrate each other without interacting leading to
pairwise ideal behavior. For trajectories with d ¼ 1, all pairwise
interactions are ideal. In this limit, the structure and dynamics
are completely ideal with no spatial correlation between
particles.

For trajectories with d ¼ 0, all pairwise interactions are
governed by a HC potential and the dynamics observed are that
of a d-dimensional hard sphere system. For d > 0, the particles
can take on overlapping congurations. When the particles
overlap, clusters are formed. The size Nc(i) of a cluster is dened
by the number of spheres connected by overlaps to i other
particles, self-inclusive.27 As illustrated in Fig. 1, the distribu-
tion of cluster sizes is strongly inuenced by the value of d. At
small d the system consists of mostly monomers and dimers.
For intermediate d, higher order oligomers are formed. For d ¼
1 the particles have no spatial correlation and are Poisson
distributed. In this state, the structure of the system is domi-
nated by transient high order clusters.

In the SPA, the positions and velocities of each particle are
updated through a time-driven hard-sphere algorithm.47 When
5352 | Soft Matter, 2014, 10, 5350–5361
collisions occur (aij(tcol) > d), they are elastic and thus the total
kinetic energy of the system is conserved. The potential energy
of the system V is also constant, V ¼ 0, as given by (6). For
deterministic dynamical systems governed by so potentials,
such as the GEM, the kinetic energy is not conserved and the
total energy of the system is varyingly partitioned into the
potential and kinetic terms.

The initial positions of the particles are chosen by placing
their centers at distinct points on a uniform lattice. The initial
velocities are sampled from a Maxwellian distribution corre-
sponding to T ¼ 300 K, although for the athermal potential (6)
the choice of temperature is arbitrary.

The simulations are partitioned into two stages: an initial
spatial relaxation stage and a second sampling stage. The rst
stage is implemented to achieve a spatially relaxed state. Aer
the initial velocities are assigned, these velocities are rescaled
such that the total energy of the system, for every trajectory
becomes dNkBT/2. The system is then aged for 5� 105 collisions
to achieve a spatially relaxed state (both hard and so interac-
tions are counted as collisions in this phase). As observed
previously,46 f relaxes to an equilibrium value quickly during
this equilibration phase. During a second sampling stage, all
statistical data is generated by sampling the system at constant
time intervals. The details for the exact methods used to sample
the studied observables are discussed in Sections 2.2 and 3.

The HC volume fractions chosen for the study in one
dimension were in the range f0 ˛ [0.125, 0.968]. A one-dimen-
sional gas does not exhibit a phase transition48 and therefore
the system remains in the isotropic phase within this range of
volume fractions. An isotropic-solid phase transition occurs for
HC systems only in dimensions greater than one.

A system of hard disks in two dimensions undergoes an
isotropic-hexatic phase transition at f0 z 0.7 and a hexatic-
solid phase transition at f0z 0.73.49,50 The HC volume fractions
chosen for the study in two dimensions are ranged f0 ˛ [0.125,
0.75]. In three dimensions, freezing occurs at f0 z 0.491 and
melting at f0z 0.543 with isotropic-solid coexistence occurring
between these two volume fractions.51–53 In three dimensions we
have studied volume fractions f0 ˛ [0.1, 0.5].

In general, when d s 0, the observed volume fraction f is
much less than the HC volume fraction f0. When the particles
are allowed to overlap, the phase boundaries present in HC
systems cease to exist and complex phase behavior can occur as
the particles form clusters.12,28,54–56
2.2 Measurement of the occupied volume fraction

For systems consisting of particles with well-dened spatial
boundaries, a fundamental observable is the occupied volume
fraction. Through the introduction of an indicator function40

IðrÞ ¼
�
1; if r˛ particle phase;
0; otherwise;

(7)

a spatial coordinate r can be classied as belonging to the
particle phase or the void phase. The occupied volume fraction
is the expectation value of the indicator function,
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Selected spatial configurations of N ¼ 1000 spheres at f0 ¼ 0.4 for d ¼ 0.025 (left), d ¼ 0.25 (middle), and d ¼ 1 (right). The particles are
colored according to cluster size Nc.
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f ¼ hI(r)i, (8)

over the domain of all points r in the simulation subspace V .
Determination of this volume fraction for a system of over-

lapping particles is non-trivial and oen computationally taxing
to measure in simulation. Two of the most used methods to
measure f are Monte Carlo (MC) integration42,57 and the GRID
method.25,41,42

The MC approach involves generating a large number of
random coordinates in V , and checking if those coordinates are
overlapped by any particle from the system. The ratio of the
number of sampling points that are overlapped to the total
number of points generated is f, as given by eqn (8). The GRID
method involves discretizing the sampling space V into uniform
bins. These bins are then probed individually to see if any
particle overlaps with the chosen bin. The ratio of the number
of occupied bins to that of total bins is f.

The accuracy of both the MC and GRID methods increases
with an increasing number of sampling points or bins used.
However, the trade-off to this increase in accuracy is an increase
in computational time. Thus, the number of sampling points or
bins is oen chosen such that there is an acceptable balance
between statistical accuracy and computational efficiency.

Although algorithms that give an exact measure of the
occupied volume are known in one and two dimensions,46,58 we
have used the MC sampling method to maintain a uniform
methodology for all dimensions studied. We have found that
MC gives an acceptable mix between ease of implementation,
computational efficiency, and statistical accuracy. To measure
f, for each parameter set {d, f0}, 10

4 frames were integrated
using 106 sampling points per frame. A single trajectory was
evolved to generate the congurations used for integration.
Previous studies using 8000 trajectories yielded the same
results, up to nite size effects,46 thus conrming the ergodicity
of systems evolving through eqn (6).
This journal is © The Royal Society of Chemistry 2014
3. Radial distribution function and z-
mapping

When a macromolecule's atomistic degrees of freedom are
reduced to a coarse-grained description, the effective potential
between the coarse-grained structures can be modeled using
bounded potentials. The bounded, i.e., nite, nature of these
potentials allows for the centers of mass of the coarse-grained
macromolecules to overlap relative to their radius of gyration s.
This leads a characteristic feature in g2(r) where there is a non-
zero probability to nd the interacting macromolecules directly
on top of each other, i.e., g2(0) s 0. This is in contrast with
simple uid interactions in which the excluded volume of the
nuclei give zero probability to nd the interacting molecules in
a completely overlapped state. The soness of the governing
coarse-grained potentials leads to cluster formation12,28,54–56 and
complex functional forms for g2(r) in the penetrative region (PR)
dened by r such that 0# r < s. For systems that evolve through
the potential (6), the functional form of g2(r) depends on the
pairwise penetration probability d and therefore it must be
included as a parameter, g2 ¼ g2(r; d).

In the dilute limit, when three and higher order interactions
can be neglected, g2(r; d) is constant in the PR and equal to d. As
the density of the gas is increased multi-body effects dominate
the potential of mean force. In the language of the Ornstein–
Zernike formalism, indirect contributions dominate the struc-
tural assembly whereas the direct contributions leading to g2(r)
¼ d are small. When these indirect contributions are strong, as
is the case in dense N-body systems, g2(r; d) s d due the multi-
body effects. The potential of mean force (PMF) w2(r; d) between
a pair of particles can be extracted from g2(r; d) through the
relationship

g2(r; d) ¼ e�bw2(r;d), (9)

where b ¼ 1/kBT.
Soft Matter, 2014, 10, 5350–5361 | 5353
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Fig. 2 shows g2(r; d) for a one-dimensional system at f0

˛{0.25, 0.5, 0.75} over various values of d. For f0 ¼ 0.25, the
radial distribution function approaches constant behavior for r
< s. At higher f0 values, in the PR, g2(r; d)s d and particles have
a propensity to be in overlapped states which is evident by
observing that g2(0; d) $ g2(s

�; d), with the equality holding as
f0 / 0. (Note that s� and s+ correspond to the approach of r to
s from the le or the right, respectively.) The reduced volume
state arises from the overlap of effectively-ideal particles into
clusters (Nc $ 2). The particles in the cluster are free to overlap
at no energy cost as the interaction between them is ideal. If the
cluster has HC interactions with a shell of particles surrounding
them, the HC interactions push the clustering particles into a
completely overlapped state forcing the cluster to minimize the
occupied volume. This connement effect gives rise to the g2(0;
d) $ g2(s

�; d) behavior. It is interesting to note that while
particles belonging to the cluster have no intracluster interac-
tions, the characteristic concavity in g2(r) is also observed in
Fig. 2 The radial distribution function g2(r; d) for one-dimensional
rods (d¼ 1) measured from simulations at various f0 and d values using
a histogram bin width of s/300. The integration was performed for
each set of parameters {f0, d} over a varying number (5 � 105 � 2 �
106) of configurations.

5354 | Soft Matter, 2014, 10, 5350–5361
deterministic models in which clustering is brought on by
intermolecular and intramolecular interactions.22–24,56

The pairwise soness d can be be mapped to a heuristic N-
body soness parameter z to account for multi-body induced
effects in the pairwise potential through the weighted distri-
bution of energy states in the PR. In dimension d, we dene this
parameter as the probability to nd a particle in the PR, with
respect to a test particle, for a specic value of d, normalized by
the ideal (d ¼ 1) probability,

z
ðdÞ
V ðdÞ ¼

ðs
0

rd�1e�bw2ðr;dÞdrðs
0

rd�1e�bw2ðr;1Þdr
: (10)

For d ¼ 0, zV ¼ 0 because particles are not allowed in the PR
and for d ¼ 1, zV ¼ 1. Thus, the limiting values of zV are in
agreement with the limiting values of d.

The results given by eqn (10) in one, two, and three dimen-
sions are shown in Fig. 3(a)–(c), respectively. The trend in z(d)V is
the same across all dimensions d. As we will show, f has distinct
Fig. 3 z(d)V as a function of d, at various f0 values, for systems in (a) d ¼
1, (b) d ¼ 2, and (c) d ¼ 3 dimensions. The black dashed line corre-
sponds to the infinite dilution limit.

This journal is © The Royal Society of Chemistry 2014
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trends that depend highly on the dimensionality of the system.
We conjecture, and illustrate in Section 5, that these dimen-
sionally-variant spatial effects can be captured by a different
soness parameter,

zLðdÞ ¼

ðs
0

e�bw2ðr;dÞdrðs
0

e�bw2ðr;1Þdr
; (11)

using line (contour) integrals of the Boltzmann-weighted states
over the PR along the one-dimensional line connecting the
centers of a given pair of particles. The z’s dened by eqn (10)
and (11) are equivalent in one dimension (d ¼ 1) but differ
dramatically at higher d. As will be seen below, the parameter zL
is more effective in following the trends observed for spatial
properties, and specically f, as the system dimensionality is
increased.

Fig. 4(a) shows zL as a function of d for a one-dimensional
system. The zL values are calculated by numerical integration of
eqn (11) for g2(r; d) values obtained fromMD simulations. At the
Fig. 4 zL as a function of d, at various f0 values, for systems in (a) d¼ 1,
(b) d ¼ 2, and (c) d ¼ 3 dimensions. The black dashed line corresponds
to the infinite dilution limit. The black solid line in (c) is the zL ¼ 1 upper
bound.

This journal is © The Royal Society of Chemistry 2014
dilute density f0 ¼ 0.125, zL weakly deviates from the ideal d
value. As f0 is increased toward the maximum HC packing
fraction, f0¼ 1, a characteristic shape occurs. For small d, the zL
values deviate strongly from ideal behavior. As d is increased
toward the ideal limit, d¼ 1, zL deviates less strongly. This effect
is induced by the SPA, as the particles in the system are not
strongly correlated when the probability of collision is small.

In two dimensions, as shown in Fig. 5, the trends of g2(r; d)
are generally the same as those seen in one dimension. The HC
volume fraction f0 ¼ 0.75 is above the solid phase transition
and g2(r; 0) begins to take on the characteristic shape of a solid.
For f0 ¼ 0.75 and d ¼ 0.01, g2(0; d) > g2(s

+; d) showing that the
density of the system is greatest inside the PR. This affects zL

strongly, as shown in Fig. 4(b) where the zL/d ratios are larger
than those in one dimension for small d.

In Fig. 6, the measured g2(r; d) functions are shown for a
system of three-dimensional spheres at various f0 and d values.
For small d and large f0, highly overlapped states are heavily
Fig. 5 The radial distribution function g2(r; d) for two-dimensional disks
(d ¼ 2) measured from simulations at various f0 and d values using a
histogram bin width of s/300. The integration was performed for each
set of parameters {f0, d} over a varying number (5 � 105 � 3 � 106) of
configurations.

Soft Matter, 2014, 10, 5350–5361 | 5355
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Fig. 6 The radial distribution function g2 (r; d) for three-dimensional
spheres (d ¼ 3) measured from simulations at various f0 and d values
using a histogram bin width of s/300. The integrationwas performed for
each set of parameters {f0, d} over a varying number (5� 105 � 3� 106)
of configurations.

Soft Matter Paper

Pu
bl

is
he

d 
on

 3
0 

M
ay

 2
01

4.
 D

ow
nl

oa
de

d 
by

 L
os

 A
la

m
os

 N
at

io
na

l L
ab

or
at

or
y 

on
 9

/1
2/

20
21

 6
:3

5:
34

 P
M

. 
View Article Online
favored and g2(0; d) [ g2(s
+; d) with respect to one and two

dimensional systems. In this large-f0, small-d regime, over-
lapping congurations dominate in the distribution of parti-
cles. This clustering state is analogous to the so-called “cluster
anomaly” found in the deterministic (GEM-n) model.56 In the
SPA it leads to a turnover in the zL function for larger packing
fractions f0 as shown in Fig. 4(c), whereas in one and two
dimensional systems zL is a monotonically increasing function
of d at f0.

The trends observed in g2(r; d) suggest that as the dimen-
sionality is increased, pairs of overlapping particles become
more conned by the rst solvation shell. For d¼ 1, the number
of neighboring sites is 2. For a particle to be allowed to leave a
cluster, there must either be a cavity available to accommodate
the particle, or a neighboring site must switch interaction from
HC to ideal, i.e., a random number a(tcol) generated at the time
of collision must be less than d. With increasing f0, the prob-
ability to nd a cavity with enough free volume decreases. Thus,
5356 | Soft Matter, 2014, 10, 5350–5361
for a particle to leave a cluster it must do so through a stochastic
switching of interactions. As the dimensionality is increased,
the number of neighboring sites also increases due to the
respective packing geometries. With increasing d, the particles
in a cluster interact repulsively with more neighbors. This
increase in the number of neighbors forces the cluster into a
heavily overlapped state. This phenomenon is manifested in the
trends of g2(r; d) discussed above.
4. Theory

In this section, we derive two expressions for predicting the
occupied volume fraction f of a system of SPA particle with hard
core volume fraction f0. The rst one is an analog of an
expression derived by Rikvold and Stell (RS)59,60 for the PSM
using the Kirkwood superposition approximation,61 but now
obtained for a system of particles evolving through the SPA. The
second expression relies on mean eld arguments for the
conditional probabilities of nding a pair of particles in an
overlapped state as particles are sequentially added to the
system.
4.1 Kirkwood superposition approximation for SPA particles

In the PSM,45 the pair correlation function g2(r) is taken to be a
constant in the PR. In this limit, we can dene d, as used in the
SPA model, as that constant, i.e., g2(r; d) ¼ d. Thus, in analogy
with eqn (10) and (11), both z(d)V and zL, for any dimension, are
equal to d, i.e.,

zL,V(d) ¼ d. (12)

This is the limiting case of the SPAmodel at innite dilution.
To predict f in the PSM, RS also used the Kirkwood superpo-
sition approximation61 for higher-order correlation functions,

gnðr1;.; rnÞ ¼
Y

1# i\j# n

g2
	
rij


; (13)

e.g.,

g3(r1,., r3) ¼ d3, (14)

g4(r1,., r4) ¼ d6, (15)

and in the thermodynamic limit (N / N, Ld / N, N/Ld ¼
const) derived a dimensionally invariant expression for the
occupied volume fraction through a power series in f0,33,35,59,60

fRS-SPAðf0; dÞ ¼ �
XN
k¼1

ð�f0Þk
k!

d
kðk�1Þ

2 ; (16)

where f0 is the volume fraction for a HC system. From eqn (16),
the limiting values of d give,

fRS-SPA(f0, 0) ¼ f0, (17)

fRS-SPA(f0,1) ¼ 1 � e�f0. (18)
This journal is © The Royal Society of Chemistry 2014
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Eqn (17) is the HC volume fraction, given by eqn (5). Eqn (18)
is the Poisson distributed result36,62 for the volume fraction of
particles with no spatial correlation at the thermodynamic
limit.

Far from the thermodynamic limit (small N), eqn (16) must
be replaced by its nite variant,46

fN-SPAðN;f0; dÞ ¼ �
XN
k¼1

�
N

k

� ð�f0Þk
Nk

d
kðk�1Þ

2 : (19)

where
�
N
k

�
is the binomial coefficient, and the last term in the

summand is the k-th order correlation function gk. The differ-
ence in eqn (16) and (19) lies in coefficients of the f0 power
series. The limiting values of d in eqn (19) give

fN-SPA(N, f0, 0) ¼ f0, (20)

fN-SPAðN;f0; 1Þ ¼ 1�
�
1� f0

N

�N

: (21)

As the thermodynamic limit is approached,
fN-SPA ������!N/N

fRS-SPA.
Multi-body interactions leading to clustered states, can

drastically affect f in the SPAmodel. To account for the indirect,
multi-body induced effects, z must be used in place of d. The
general Kirkwood approximation for the k-th order correlation
function in z-space is

g
ðzÞ
k ¼ ðzðdÞÞ

kðk�1Þ
2 : (22)

The analog to the nite N-SPA expression, eqn (19), for f in z-
space can thus be written as

fz-SPAðN;f0; zðdÞÞ ¼ �
XN
k¼1

�
N

k

� ð�f0Þk
Nk

g
ðzÞ
k : (23)

with the replacement from eqn (22) serving to account for the
overlaps between the particles. In practice, the values of z can be
estimated using either eqn (10) or (11). We will refer to these as
the zV-SPA and the zL-SPA, respectively.
4.2 Sequential iteration method

A more accurate expression for estimating f was constructed in
ref. 46 through the sequential addition of particles to a hyper-
cube with volume Ld. Although it was derived for the one-
dimensional case, all the arguments of this sequential iteration
method (SIM) remain valid for systems of d-dimensional
penetrable spheres with arbitrary dimension d. Within the SIM
approximation, the occupied volume fraction

fSIM(N, f0, z(d)) ¼ f(N), (24)

remains a function of N, f0 and the penetration parameter d

(see eqn (11) above). The RHS of eqn (24) is the N-particle limit
of the series of occupied volume fractions f(n) for n particles.
Each such fraction can be written as
This journal is © The Royal Society of Chemistry 2014
fðnÞ ¼ 1�
Yn
i¼1

QðiÞ; (25)

where Q(i) is the conditional probability that a random point xR
not in the covering of the rst i � 1 particles is also not covered
by the i-th particle. These probabilities are found as

QðiÞ ¼
Xi�1

k¼0

�
i � 1

k

�
zi�k�1ð1� zÞkqk; (26)

where qk is the probability that xR remains a point in the void
phase of an i � 1 particle system aer the i-th particle is added
under the condition that the i-th particle has no overlap with at
least k other particles.

The probabilities qk, obtained from a recurrence relation by
use of mean eld arguments,46 read

qk ¼ q0 � fðkÞ

1� fðkÞ ; (27)

where q0 is the probability that the rst particle added to the
system does not cover the random point xR:

q0 ¼ Ld � vðdÞ

Ld
¼ 1� f0

N
; (28)

and v(d) is the volume of a single sphere in dimension d, given by
eqn (4).

Through eqn (12) and (24)–(27) the expression for fSIM(N, f0,
z(d)) can be evaluated giving

fSIM
	
N;f0; zðdÞ


 ¼ 1�
YN
i¼1

 Xi�1

k¼0

�
i � 1

k

�
zi�k�1ð1� zÞkqk

!
:

(29)

It gives the correct result in several limiting cases. For
example, in the case of hard spheres, where d ¼ 0, one obtains

fSIM(N, f0, z(0)) ¼ 1�q0q1.qN�1 ¼ f0, (30)

as one expects for the HC limit from eqn (20). For fully trans-
parent particles in the d ¼ 1 limit, the occupied volume fraction
is

fSIM(N, f0, z(1)) ¼ 1�q0
N, (31)

which is equal to the exact result given by eqn (21). Thus, at
limiting values of d, the SIM expression is exact. We will refer
eqn (29) as both the zV-SIM and the zL-SIM expression,
depending on which z parameter is used in calculation.
5. Discussion
5.1 One dimension

In one dimension, the dynamics are those of a system of rods
moving on a line. Shown in Fig. 7 are the results for f given by
the N-SPA (19), zL-SPA (23) and zL-SIM (29) expressions. Note
that for d ¼ 1, zL ¼ zV.

For dilute systems, f is an approximately linear function of d
and all three analytic predictors give satisfactory results,
Soft Matter, 2014, 10, 5350–5361 | 5357
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Fig. 7 The occupied volume fraction f as a function of the penetra-
tion probability parameter d in one dimension (d ¼ 1). The blue filled
circles are the results of MD simulations. The result of the N-SPA
expression, given by eqn (19), is shown as a dashed black curve. The zL-
SPA expression, given by eqn (23), is shown as a solid orange curve.
The zL-SIM result, given by eqn (29), is shown as a dashed red curve.

Fig. 8 The occupied volume fraction f as a function of the penetra-
tion probability parameter d in two dimension (d¼ 2). The zv-SIM result
is shown as a solid black curve. The result obtained using the N-SPA
expression (dashed black) is shown only for f0 ¼ 0.75. All other labels
and symbols correspond to those in Fig. 7.
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interpolating approximately linearly between the completely
hard (d ¼ 0) limit and the completely so Poisson distributed (d
¼ 1) limit. As f0 is increased and the system becomes denser, a
characteristic feature of f in systems governed by bounded
potentials can be seen. As d is moved slightly from the d ¼
0 limit, f decreases drastically due to pressure pushing the
particles into overlapped states. In this regime, both the N-SPA
and zL-SPA expressions fail to agree with simulation results
while the zL-SIM expression shows excellent agreement. The
error between the results measured from MD and zL-SIM
expression is <1.5% over all values of f0 and d. In comparison,
the N-SPA expression gives error >20% at large f0 and small d.
Fig. 9 The occupied volume fraction f as a function of the penetra-
tion probability parameter d in three dimensions (d ¼ 3). The labeling
and symbols correspond to those in Fig. 8. The result of the N-SPA
expression (dashed black) is shown only for f0 ¼ 0.5.
5.2 Two dimensions

The results for f generated from simulation and analytic theory
for a two-dimensional system of disks are shown in Fig. 8. The
general trends are the same as in one dimension. When d s
0 the observed volume fraction is decreased from f0. This
decrease is pronounced at high densities and small d where
overlapped states are favored as observed in the PR of g2(r; d) in
Fig. 5. The N-SPA expression, which is shown only for f0 ¼ 0.75,
fails in the large-f0, small-d regime while both the zL-SIM and
the zL-SPA expressions show agreement with the results
measured from MD simulations across all ranges of f0 and d

studied. The zL-SIM expression gives error in f, with respect to
values obtained from MD simulation, of z 5% at large f0 and
small d, with typical error < 1% outside of this regime. Inter-
estingly, the dimensionally-scaled zV-SIM expression gives error
z10% at large f0 and small d values. This error decreases
signicantly as d is increased, but it is always greater than that
5358 | Soft Matter, 2014, 10, 5350–5361
given by the zL-SIM expression, up to large d values where the
error in both expressions becomes negligible, typically <0.1%.
5.3 Three dimensions

Fig. 9 shows the results for f measured from simulation and
predicted by the analytic approaches of Section 4 for a system of
three-dimensional spheres. At low to moderate densities f0 ˛
{0.1, 0.2, 0.3} the results fromMD simulations agree with the zV-
This journal is © The Royal Society of Chemistry 2014
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SIM, zL-SIM, and the zL-SPA expressions across all ranges of d.
In this density regime, the error for all three expressions is < 2%
at small d values and is typically < 1% for d $ 0.25.

At higher densities f0 ˛ {0.4, 0.5}, close and above the HC
freezing transition density (f0 z 0.491), the theoretical
predictions are in agreement with the MD results for large d,
contrary to the case of small d. The latter divergence is caused by
a change in structure from an isotropic state to a crystal or
clustered state. Note that when zL > 1, which is shown in
Fig. 4(c), the weighting of states in eqn (23) and (29) fails cata-
strophically. In this case, we make an ad hoc correction by
imposing that zL be bound from above by zL ¼ 1. When clus-
tering behavior dominates the structure of the system, it has
been shown that for the deterministic PS potential (2) other
analytic theories breakdown.25,27 In this regime, completely
overlapped states are highly favored and theory based on
assumptions of spatial uniformity would be expected to fail. At
high densities we observe in systems governed by the stochastic
Fig. 10 The clustering probabilities Pc(i) of three-dimensional spheres
as a function of f0 for d ¼ 0.01 (top), d ¼ 0.5 (middle), and d ¼ 1
(bottom). Different values of i run from “monomer” (i ¼ 1) to “hexamer”
(i ¼ 6) as indicated in the top panel. For each set of parameters {f0, d}
the probabilities were calculated by integrating over 5 � 105 spatial
configurations.

This journal is © The Royal Society of Chemistry 2014
potential (6) the same “cluster anomaly” found in the deter-
ministic (GEM-n) model.56

To characterize the anomalous clustered state, the depen-
dence of the clustering probability on f0 was measured from
MD simulations. Let Pc(i) denote the probability of a randomly
chosen particle being connected by overlaps to i other particles,
self-inclusive.27 If the particle does not overlap with any other
particles (i ¼ 1) it is a monomer; two penetrating particles form
a dimer (i ¼ 2) given there is no other particle overlapping the
former ones, etc.

The results are shown in Fig. 10. At d¼ 0, no particles overlap
and the system consists entirely of monomers. At small d and
large f0 the most probable conguration is a dimer. The turn-
over from a state in which monomers are favored to a state in
which the particles cluster and dimers are favored is the exact
trend of clustering observed in the (GEM-n) model (cf. Fig. 4 in
ref. 56). For intermediate d, higher order oligomers are formed
and the distribution of clusters is Poisson-like as observed by
comparing the middle and bottom panels of Fig. 10. For d ¼ 1
the particles have no spatial correlation and are Poisson
distributed.

The internal dimer radial distribution function gdi2 (r; d) gives
the probability to nd the second particle in a dimer at a
distance r from the rst particle. For r > s, gdi2 (r; d)¼ 0 as the two
particles are not in a dimerized state in this case. In Fig. 11 the
ratio gdi2 (r; d)/g

di
2 (s

�; d) is shown for various d values for f0¼ 0.25
and f0 ¼ 0.5. For r z s, this ratio decreases because the cluster
is more likely to be in a higher order oligomer due to the
available volume for other particles to occupy. As r approaches
Fig. 11 Semi-log plots of the scaled internal dimer gdi2 (r; d)/g
di
2 (s

�; d)
radial distribution functions for three-dimensional spheres at f0¼ 0.25
(top) and f0 ¼ 0.5 (bottom).
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0, the particles become completely overlapped. At f0 ¼ 0.25 and
d¼ 0.01, the ratio gdi2 (0; d)/g

di
2 (s

�; d)z 15 while at f0 ¼ 0.5 and d

¼ 0.01 it jumps up to �2500 indicating a large increase in
propensity for the dimer to be in a highly overlapped state.

6. Conclusions

We have studied the static structures of a system of stochasti-
cally penetrable spheres through MD simulations and analytic
theory in dimensions one, two, and three. In simulation, the
interactions between particles are governed by a stochastic
potential. This stochastic potential bridges hard-core and ideal
behavior through a penetration parameter d. The value of d

governs whether the particles are allowed to interpenetrate
(overlap) or are completely hard. When the particles take on
overlapping states, the volume occupied by the system is
reduced. To predict the particle volume fraction, analytic
theories have been developed based on conditional probabili-
ties derived from the sequential addition of particles to
conguration space. The particle volume fraction has been
measured from simulation and the results have been compared
to the theoretical predictions. These results were found to be in
excellent agreement apart from an observed clustered regime at
high densities and small d in three dimensions. We have
characterized this regime through analysis of clustering prob-
abilities and intracluster spatial distributions.

In one and two dimensions, over the densities studied, we
see no conclusive evidence of a transition from an isotropic
stable state to a cluster-forming regime where particles exist,
and persist, in completely overlapped states. Trends in the
effective occupied volume fraction f suggest that these transi-
tions could be observed as the density is increased toward the
maximum hard-core packing fraction.

A qualitative comparison between the results of simulations
generated with particles described by deterministic bounded
models and by the presented stochastic bounded model has
shown that the stochastic models capture the general behavior
of their deterministic analogs. In particular, the collective effect
of pairwise so interactions appear to be characterizable
through a single reduced parameter that captures their overlap
probability. We further conjecture that the structural properties
of deterministic bounded potentials can be exactly reproduced
using stochastic models based on this one characteristic. The
derivation of stochastically realized, non-Newtonian equations
of motion for coarse-grained macromolecular dynamics is a
focus of our current research.
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