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ABSTRACT: The surface coverage of coarse-grained macro-
molecules bound to a solid substrate is not simply proportional to
the two-dimensional number density because macromolecules can
overlap. As a function of the overlap probability δ, we have developed
analytical formulas and computational models capable of character-
izing this nonlinear relationship. For simplicity, we ignore site−site
interactions that would be induced by length-scale mismatches
between binding sites and the radius of gyration of the incident
coarse-grained macromolecular species. The interactions between
macromolecules are modeled with a finite bounded potential that
allows multiple macromolecules to occupy the same binding site. The softness of the bounded potential is thereby reduced to the
single parameter δ. Through variation of this parameter, completely hard (δ = 0) and completely soft (δ = 1) behavior can be
bridged. For soft macromolecular interactions (δ > 0), multiple occupancy reduces the fraction of sites ϕ occupied on the
substrate. We derive the exact transition probability between sequential configurations and use this probability to predict ϕ and
the distribution of occupied sites. Due to the complexity of the exact ϕ expressions and their analytical intractability at the
thermodynamic limit, we apply a simplified mean-field (MF) expression for ϕ. The MF model is found to be in excellent
agreement with the exact result. Both the exact and MF models are applied to an example dynamical system with multibody
interactions governed by a stochastic bounded potential. Both models show agreement with results measured from simulation.

1. INTRODUCTION

The phase and spatial behavior observed in the assembly of a
monomeric species into oligomeric clusters1−7 drives the design
of materials with unique functionalities.8−11 At atomistic length
scales, the structural complexity arising from assembly is often
difficult to describe using analytical theory or to simulate on
relevant time scales due to the large numbers of degrees of
freedom that constitute such systems. To reduce this
complexity, the atomistic degrees of freedom can be reduced
to a coarse-grained (CG) description where a group of atomic
degrees of freedom is mapped onto a single CG site.12−16 At
mesoscopic length scales, CG macromolecules can be modeled
using repulsive potentials that are finite valued at the origin, i.e.,
bounded potentials.17,18 The finite nature of bounded
interactions allows for multiple macromolecules to overlap
and occupy the same volume in configuration space.19,20

Studies of mesoscopic systems with interactions dictated by
bounded potentials include colloid suspensions,21 polymer−
colloid mixtures,22 star polymers,23 and block copolymers.24,25

The structures that emerge from overlapping spatial
configurations render nontrivial geometries of the system’s
particle phase. This is in contrast to the atomistic scale in which
nuclear repulsion does not allow for pairs of atoms to overlap,
and thus mutually exclusive probabilistic arguments suffice to
describe the resulting bulk-phase structure. This overlapping
phenomenon has been observed experimentally in the structure
factor of dendrimers, measured with small-angle neutron
scattering26 in agreement with the theoretical predictions of
Likos and co-workers.20,27

The determination of the occupied volume fraction of a
system’s particle phase ϕ is of specific interest for the design of
materials with properties driven by bulk-phase connectivity,
such as conductivity and permeability.28−34 The attainable
particle-phase volume fraction in systems consisting of soft
macromolecular structures is much larger than that of systems
governed by hard core (HC) potentials.35 In simple HC
models, such as the well-known hard sphere systems,36 the
infinite value of the governing potentials prohibits a set of
particles from overlapping. When coarse-grained intermolecular
interactions are modeled using bounded potentials, an increase
in attainable volume fractions gives rise to complex clustering
behavior,20,37−40 as the particles are allowed to overlap relative
to their characteristic radius of gyration.
The assembly of particles on a substrate that are prohibited

from overlapping because of steric repulsion is often modeled
using random sequential adsorption (RSA).41 In the RSA
procedure, particles are deposited sequentially, with the
position of the incident particle chosen at random. If the
placement of an incident particle on the chosen position leads
to overlap with any previously added particle, the particle does
not bind to the substrate. The insertion of nonoverlapping
objects to a volume generates nonequilibrium structures that
differ from the configurations generated by HC systems in
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thermodynamic equilibrium.42,43 By forming geometrical
objects through combinations of identical spheres, RSA can
be extended to polymeric structures.44,45

The RSA can be further generalized through the random site
model (RSM) by subdividing the substrate into a random
distribution of discretized binding sites.46,47 The occupied
fraction of independent discrete sites, when only monolayers
are allowed, can then be obtained from the standard Langmuir
isotherm.48 Multilayer coverage and distributions in reversible
equilibrium adsorption processes can be addressed through the
BET (Brunauer, Emmett, and Teller) isotherm49 as long as
adsorbate−adsorbate interactions are ignorable.50

In the deposition of coarse-grained macromolecules on a
surface, there is a possibility for them to occupy the same
binding site at a finite energy cost, and this can be addressed
even within interaction models that involve bounded potentials.
The single occupancy criterion of the RSM and the Langmuir
isotherm does not sufficiently describe the complexity of the
generated structures with such multiple occupancy. Multilayer
isotherms built on assumptions involving bulk-phase inter-
actions and the independence of each monolayer also fail.
Finken et al.51 and Likos et al.52 have developed multiple
occupancy lattice models to study the phase behavior of coarse-
grained macromolecules through evaluation of approximated
partition functions. These studies have elucidated both phase
separations and the transition to clustering regimes in
equilibrium CG systems, but they are not directly applicable
to the prediction of structures generated from sequential
addition processes.
The self-organization of cells on microstructured surfaces is

another example of an observed multiple occupancy phenom-
enon. Binding sites are created by coating a substrate with
protein. A cell line is introduced to the substrate and the cells
self-organize on the binding sites. After organization, a fraction
of lattice sites will be occupied by multiple cells.53 Multiple
occupancy is advantageous for processes in which cell-to-cell
communication drives survival and function54 but also a
hindrance to the creation of single cell assays.
In this article, we use an avoidance-modified soft sequential

adsorption (SSA) algorithm to model coarse-grained macro-
molecules binding to a substrate. It takes advantage of our
recent model33,34 treating soft (penetrable) interactions using
stochastic hard-sphere potentials. In the SSA process, purely
repulsive pairwise interactions drive the assembly, and the
bounded nature of the underlying potential allows multiple
molecular structures to occupy the same binding site.
Simulations and a new theoretical framework of the SSA
process provide the fraction of occupied binding sites ϕ and the
distribution of occupied sites. For systems at the thermody-
namic limit, we derive ϕ using mean field (MF) arguments and
compare both the exact and MF results with measurements
taken from Monte Carlo (MC) simulations, with excellent
agreement observed. These expressions are applied to a system
governed by a stochastic bounded potential that includes
multibody interactions. We find that using the exact SSA
derivation of ϕ, we can predict the occupied volume fraction of
equilibrium configurations of coarse-grained, penetrable sys-
tems. The occupied volume fraction also differs from what is
observed in the case of relaxed surface coverage (RSC), that is,
when the particles are allowed to move between binding sites
upon SSA.

2. SOFT SEQUENTIAL ADSORPTION (SSA)
We consider a substrate with n discrete binding sites and k
incident macromolecules, which arrive sequentially and bind
irreversibly to the substrate. The potential between a pair of
macromolecules, i and j, is described by

=
ϵ =

⎪

⎪⎧⎨
⎩V r

r
( )

, 0

0, otherwise
ij

ij

(1)

which is ϵ if the pair of macromolecules occupies the same site
on the substrate and 0 otherwise. A potential of this form is a
lattice generalization of the well-known penetrable sphere (PS)
potential55−59 introduced by Marquest and Whitten,60 to
model solutions of micelles.
Through the introduction of a Boltzmann weighted softness

parameter

δ = −ϵ*e (2)

with ϵ* = ϵ/kBT, the softness of the underlying potential can be
reduced to one parameter. The limiting values of this parameter
classify the adsorbate as completely hard (δ = 0) when no
multiple occupancy is allowed and as completely soft (δ = 1)
when macromolecules are allowed to occupy the same binding
site. For a particular system, the actual value of δ would depend
on, for example, the critical adsorption point, internal structure,
orientation, and chain length of the incident species.61,62 At
intermediate values, 0 < δ < 1, complex structures are generated
through the non-Markovian, avoidance-modified SSA algo-
rithm, which is implemented as follows:

1. A substrate with n binding sites is created and a value of the
sof tness parameter δ ∈ [0, 1] is preassigned to the incident
binding macromolecules.

2. A macromolecule is created and a binding site on the
substrate is selected randomly f rom a uniform distribution.

3. If the binding site is unoccupied, the macromolecule
irreversibly adsorbs to the selected site. Bound macro-
molecules do not dif fuse on the surface or desorb f rom the
surface.

4. If the binding site is already occupied by i > 0
macromolecules, the macromolecule irreversibly adsorbs to
the selected site with probability δi and is rejected f rom the
site with probability (1 − δi).

5. If the macromolecule is rejected f rom the binding site, a new
binding site on the substrate is selected randomly, with all
sites having equal probability of being selected, and the
acceptance loop (steps 3 and 4) is repeated.

The sequential creation−acceptance process is repeated until
k macromolecules are added to the substrate. After the
sequential addition of macromolecules, the substrate will have
some number of occupied and unoccupied sites. The occupied
volume fraction ϕ is the average number of occupied binding
sites, i.e., the surface coverage concentration.
The number of possible microstates for a lattice system that

allows multiple occupancy, where both the macromolecules and
binding sites are distinguishable, is nk. The energy of the system

∑ ∑=
= >

E V r( )
i

k

i j
ij

1 (3)

is characterized entirely by the intermolecular interactions. It is
notable that the distribution of energy states generated by
sequential addition methods cannot be equated to the
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probabilistic distribution of the canonical Boltzmann partition
function.42

In this article, we will derive methods to predict the
weighting of microstates that arise from the SSA procedure.
Through calculation of the microstate weighting, either by exact
means or through approximate methods, spatial properties of a
system undergoing SSA, such as ϕ, can be elucidated
analytically.
For completely hard (δ = 0) macromolecules, ϕ is trivially

ϕ = k
n0 (4)

where the number of binding macromolecule is bounded above
by k = n, as at this limit there are no available binding sites for a
k + 1 incident macromolecule. For soft (δ > 0) interactions,
multiple macromolecules can occupy the same binding site and
ϕ0 is an upper bound to the actual volume fraction ϕ, i.e., ϕ ≤
ϕ0. Note that when k > n the surface coverage concentration ϕ,
which is the expectation value of ratio of occupied binding sites
to total binding sites, cannot exceed unity. At the δ = 1 limit,
the occupancy follows a binomial distribution

∑ϕ
ϕ

ϕ

= − +
−

= − −

=

⎛
⎝
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⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
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⎛
⎝⎜

⎞
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k
i k

k

1 1
( )

1 1

i

k i

i

k

1

0

0

(5)

which is bounded above by ϕ = 1. In the limit (k → ∞, n →
∞), eq 5 can be replaced with well-known Poisson distributed
result,63,64

ϕ = − ϕ−1 e 0 (6)

which is the volume fraction occupied by macromolecules that
overlap with no energy cost at the thermodynamic limit. Figure
1 shows selected configurations generated as macromolecules
are sequentially added to binding sites with δ = 1. The softness
of the macromolecules allows multiple occupancy of a binding
site and causes a decrease in the occupied volume fraction with
respect to ϕ0.
At intermediate softness, 0 < δ < 1, the pairwise interactions

generate complex behavior in ϕ. In the following two sections
of this article, we will derive two expressions to predict the
volume of a substrate occupied by an incident molecular species
undergoing SSA.

3. EXACT OCCUPIED VOLUME FRACTION

Consider the sequential addition of k macromolecules added to
a substrate with n binding sites. As the particles arrive at the
substrate, the probability of selection for a specific site is 1/n. In
the nontrivial δ > 0 regime, after the sequential addition of k
macromolecules, the configurations of occupied sites that can
be generated are given by the integer partitions {νk} of k. Kindt
has developed theory to predict the equilibrium cluster size
distribution of aggregating monomers using compositions of
integers and separable partition functions,5 and we modify his
notation for our study. The partitions {νk} define a distinct set
of occupied configurations (OC) that can be generated. For
example, after the addition of 3 macromolecules the allowed
OC are {ν3}1 = {1, 1, 1}, {ν3}2 = {2, 1}, and {ν3}3 = {3} (note
that {2, 1} = {1, 2}). In general, the occupied binding sites take
on configurations {νk}i where i ∈ {1, 2, ..., p(k)} and p(k) is the
number of partitions for the integer k. An estimation of p(k),65

for large k, is

≈ πp k
k

( )
1

4 3
e k2 /3

(7)

Figure 2 shows the event graph , encompassing all possible
OC that can be generated, for the sequential addition of k = 4
macromolecules. The first macromolecule k0 added to the
system must axiomatically bind to an unoccupied site and thus
generate {ν1}1 = {1}. This event is marked by letter “U” in

Figure 1. Several configurations generated as k = 900 macromolecules are sequentially added to solid substrate with n = 900 binding sites. The
softness parameter is δ = 1. Each binding site is colored according to the number of particles that occupy that site. The configurations shown are
progressive; each configuration c is built from the one before c50 → c200 → c500 → c900.

Figure 2. Avoidance-modified event graph for the sequential
addition k0 → k1 → k2 → k3 of four macromolecules added to a solid
substrate. The symbol Oi (red) represents that the macromolecule is
accepted onto a binding site occupied by i macromolecules and O̅i
(blue) represents that the macromolecule is rejected from a site
occupied by i macromolecules. In the event of rejection, a new site is
selected, without memory, and the acceptance−avoidance site
selection is repeated. Rejection events are shown as a directed dashed
lines. An acceptance of the macromolecule by an unoccupied site is
represented by U (gray).
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Figure 2. The second macromolecule k1 can bind to an
unoccupied site (U) generating {ν2}1 = {1, 1}, bind to the site
occupied by the first macromolecule (event “O1”) generating
{ν2}2 = {2}, or be rejected by the site occupied by the first
macromolecule (event “O̅1”). If macromolecule k1 is rejected
from the substrate, a new round of acceptance−rejection is
begun; thus the only possible final states for k1 are O1 and U.
Excluding the intermediate rejection outcomes, the third
macromolecule k2 has three possible final states. If the substrate
is in configuration {ν2}1, the macromolecule can bind to an
unoccupied site (U) generating {ν3}1 = {1, 1, 1} or be accepted
by either of the two occupied sites (“O1”) generating {ν3}2 =
{2, 1}. If the substrate is in configuration {ν2}2, the
macromolecule can bind to an unoccupied site (U) generating
{ν3}2 = {2, 1} or be accepted by the site doubly occupied by the
previously added macromolecules (O2) generating {ν3}3 = {3}.
As illustrated in Figure 2, the fourth macromolecule k3 has an
increased complexity of available final states, which have a non-
Markovian property, depending on all the previous states and
on the possible intermediate rejection outcomes.
Let {ωk}i represent the occupancy vector of the partition

{νk}i,

ω = o o o o{ } { , , , ..., }k i k1 2 3 (8)

where ol is the number of sites with l bound macromolecules.
For k = 3, the occupancy vectors are {ω3}1 = {3, 0, 0}, {ω3}2 =
{1, 1, 0}, and {ω3}3 = {0, 0, 1}. Coupled with the softness
parameter δ, the occupancy vector defines a state polynomial,

∑ω δ δ=
=

S o({ } , )k i
l

k

l
l

1 (9)

The normalized state polynomial

ν ω δ| =P
n

S(O { } )
1

({ } , )k i k i1 (10)

is the probability for the incident macromolecule to be accepted
into any occupied state (event “O”), on the first round of
acceptance−rejection, given that the OC of the substrate is
{νk}i. Let P1(O̅ | {νk}i) denote the conditional probability that
the incident macromolecule is rejected by the substrate on the
first round of acceptance−rejection, given that the OC of the
substrate is {νk}i:

∑ν δ̅ | = −
=

P
o
n

(O { } ) (1 )k i
l

k
l l

1
1 (11)

The probability of acceptance or rejection is the same for
every round, but the probability to reach that round depends
on the outcome of all previous rounds; e.g., the incident
macromolecule can be accepted on the first round, rejected on
the first round and accepted on the second, or rejected on the
first and second and accepted on the third. This sequence
continues ad inf initum, with each term in the sum representing
a successive round of acceptance−rejection. The series is
geometric, and thus the evaluated sum can be expressed as

ν ν
ν

| = |
− ̅ |

P P
P

(O { } ) (O { } )
1

1 (O { } )k i k i
k i

1
1 (12)

The conditional probability for an incident macromolecule to
bind to any occupied site given that the substrate is in
configuration {νk}i can be expressed through the state
polynomials (eqs 9 and 10),

∑ν δ
δ

ω δ
ω δ

| =
− ∑ −

=
− +

= =

⎛
⎝
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⎞
⎠
⎟⎟P

n
o
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S
n k S

(O { } )
1 1

1 (1 )

({ } , )
({ } , )

k i
i

k

i
i

n i
k

i
i

k i

k i

1
1

1

(13)

Accounting for all outcomes, the conditional probability to bind
to an unoccupied site is

ν ν| = − |P P(U { } ) 1 (O { } )k i k i (14)

The probability given by eq 13 is a sum of the probabilities to
bind to each occupied site j (event “Oj”),

∑ν ν| = |
=

P P(O { } ) (O { } )k i
j

k

j k i
1 (15)

and thus the conditional probability for the k + 1 macro-
molecule to bind to a site occupied by j macromolecules is

ν
δ

ω δ
| =

− +
P

o

n k S
(O { } )

({ } , )j k i
j

j

k i (16)

The transition {νk}i → Oj or {νk}i → U generates a distinct
partition {νk+1}l of the k + 1 integer and thus the index l
depends on j and must be included as an argument, l = l(j). The
index set {i, l} defines a distinct node-to-node transition, and
we arrive at the expression for the conditional probability that
the k + 1 macromolecule added to the system generates the
{νk+1}l(j) partition, given that the previous k macromolecules are
in the OC defined by {νk}i,

ν ν
δ

ω δ
| =

− ++P
o

n k S
({ } { } )

({ } , )T k l j k i
j

j

k i
1 ( )

(17)

if the k + 1 macromolecule binds to an occupied site, or

ν ν
ω δ

ω δ
| = −

− ++P
S

n k S
({ } { } ) 1

({ } , )
({ } , )T k l j k i

k i

k i
1 ( )

(18)

if the k + 1 macromolecule binds to an unoccupied site.
Let denote all the possible transition paths on the graph
. A subset of is i which is all the paths terminating at the

configuration defined by the {νk}ith integer partition of k. The
index set α = {α1, α2, ..., αk} is a subset of i and defines a
specific path leading from the {ν1}1 node to the {νk}ith node.
The transition probability along a specific path α is the product
of all the conditional node-to-node transition probabilities PT
on that path,

∏δ ν ν=α α α
=

−

+ +
P P( ) ({ } { } )

j

k

T j j
1

1

1 j j1
(19)

The probability Pα(δ) is a function of δ the softness parameter.
A change in δ will alter the probability of a node-to-node
transition in accordance with eq 13.
There are many such paths α ∈ i and thus the probability to

reach the {νk}ith state is the sum over all paths in i ,

∑ ∏ν ν ν= |
α

α α
∈ =

−

+ +
P P({ } ) ({ } { } )k i

j

k

T j j
1

1

1

i

j j1
(20)

Equation 20 gives the probability to observe any configuration
{νk}i.
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The fraction of substrate binding sites occupied by {νk}i
depends on its size. Let λ({νk}i) be a function that takes a
partition as its argument and returns the size of that partition.
The occupied volume fraction of the ith partition is

ν
λ ν

Φ =
n

({ } )
({ } )

k i
k i

(21)

which we enforce to be bounded from above at Φ = 1.
Combining eq 20 and eq 21 we obtain

∑ ∑ ∏ϕ ν ν ν= Φ |
α

α α
= ∈

⊆

=

−

+ +

⎧
⎨⎪
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⎛
⎝
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⎞
⎠
⎟⎟
⎫
⎬⎪
⎭⎪

P({ } ) ({ } { } )
i

p k

k i
j

k

T j j
1

( )

1

1

1

i

i

j j1

(22)

which is the exact probability for a binding site to be occupied
after the sequential addition of k macromolecules to n binding
sites.
Shown in Figure 3 are the results for ϕ, given by eq 22, as a

function of δ for various values of ϕ0. For large ϕ0 and small δ,
ϕ is observed to rapidly decrease due to propensity for
macromolecules to multiply occupy a site. The results from
Monte Carlo (MC) simulations are shown as blue circular
markers in Figure 3. The MC results for ϕ agree with those
given by eq 22.
The site occupation distribution PX(x) can also be

constructed from eq 20, where x = 0 corresponds to an
unoccupied site, x = 1 is a site with one binding macromolecule,
etc. For x ≥ 1 this probability is

∑ ν=
=

x
n

P oP ( )
1

({ } )X
i

p k

k i x
1

( )

(23)

where ox is the xth element of the occupancy vector for the
partition {νk}i, defined by eq 8. The probability to observe an
unoccupied site (x = 0) is

∑

ϕ

= −

= −
=

iP (0) 1 P ( )

1

X
i

k

X
1

(24)

which is the remaining outcome after the probability for all
occupied states has been counted.
Figure 4 shows the results for the distributions given by

PX(x) as a function of ϕ0 for various δ values. For δ = 0 the
system is completely hard and consists only of unoccupied and
singly occupied sites. At δ = 0.025 multiply occupied sites are
allowed and the distribution is highly peaked as the system

enters clustering regimes at large ϕ0. As δ is increased, sites that
are multiply occupied become more probable and the
distribution moves from a Poisson-like distribution at δ = 0.5
to the exactly Poisson distribution at δ = 1. Thus, the
occupancy distributions can be separated into four regimes: the
singly occupied HC limit at δ = 0, the clustering regime at small
δ, the Poisson-like regime at intermediate δ, and the exactly
Poissonian limit at δ = 1.
The scaling of p(k) can be estimated by eq 7. As (k → ∞, n

→ ∞) the exact expression for ϕ, given by eq 22, becomes
intractable due to the large number of partitions that must
accounted for in the calculation. Although, as shown in Figure
3, the values of ϕ at the thermodynamic limit are approached
asymptotically, and the exact expression for ϕ gives a method to
estimate ϕ for large k.

Figure 3. Fraction of occupied sites ϕ for different lattice sizes n ∈ {10, 50, 500} from left to right, respectively, as a function of the softness
parameter δ. The results for each lattice size are shown for various ϕ0 = k/n values. Each circular marker (blue) is the result calculated from 106

Monte Carlo (MC) simulations. The exact solution given by eq 22, for each value of ϕ0, is shown as a dashed curve (black). The results predicted by
the continuum mean field (MF) approximation, given by eq 28 and presented in the next section, section 4, are shown as solid curves (red).

Figure 4. Distribution of site occupation PX(x) for k = 20
macromolecules as a function of ϕ0. The exact results, given by eqs
23 and 24, for δ = 0.025 (top), δ = 0.5 (middle), and δ = 1 (bottom)
are shown as solid curves. Each circular markers is the result of 106

MC simulations.
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4. MEAN FIELD OCCUPANCY

In this section, we derive an expression built on MF arguments
for the conditional probabilities to find multiply occupied sites.
Herein, we refer to this approximation simply as the MF
method. We have previously shown that expressions built on
MF arguments can be used to accurately predict ϕ in off-lattice
models where the dynamics are governed by stochastic
bounded potentials. Full details of this derivation for a system
of particles moving on a line can be found in ref 33, and for
systems in higher dimensions in ref 34. We will generalize the
MF expression for a system undergoing SSA as follows:
Let Q(i) denote the conditional probability that the ith

macromolecule added to system, does not bind to a random
site nR given that i − 1 macromolecules have already been
added. The occupied volume fraction after adding k macro-
molecules can be found as

∏ϕ = −
=

Q1k

i

k
i( )

1

( )

(25)

The general probability of site nR not being covered by the ith
particle accounting for all possible configurations (single and
multiple occupancy sites) of the previously added i − 1
macromolecules is

∑ δ δ=
−

−
=

−
− −⎛

⎝⎜
⎞
⎠⎟Q

i
j q

1
(1 )i

j

i
i j j

j
( )

0

1
1

(26)

The binomial coefficient −( )i
j

1 counts the possible

permutations of the jth configuration. The connection
permutation probability qj is the probability site nR is not
occupied by a newly added macromolecule given j macro-
molecules have already been placed in the system and that the
newly added macromolecule interacts with the previously
added macromolecules through the jth permutation of the
interaction network. We find using MF arguments:33

ϕ

ϕ
=

−

−
q

q

1j

j

j
0

( )

( ) (27)

with q0 = 1 − 1/n. The conditional probability qj accounts for
each sequentially added macromolecule having a reduced
number of binding sites available, with respect to those
previously added. Only in the δ = 1 limit is the available volume
not reduced as every macromolecule is completely independ-
ent. Through eqs 26 and 27, ϕ can be expressed as

∏ ∑ϕ δ δ δ= −
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Equation 28 connects ϕ with the softness parameter δ. In the
limiting values cases, δ = 0 and δ = 1, it leads to the exact results
given by eqs 4 and 5, respectively.
The results of the MF approximation are shown in Figure 3.

For small n, the MF method slightly overestimates ϕ. As the
thermodynamic limit is approached (k → ∞, n → ∞) the MF
method agrees with the exact result, given by eq 22, and with
results obtained from MC simulations across all ranges of δ and
ϕ0.

5. RELAXED SURFACE COVERAGE (RSC) VS SSA
The creation−rejection−acceptance algorithm used to model
sequential adsorption of macromolecules in the SSA procedure
generates a distribution of energetic states, and hence spatial
configurations, that are constrained to remain in place once
trapped. This distribution will necessarily differ from the
canonical Boltzmann distribution of states that results when the
macromolecules are allowed to relax between sites after
adsorption resulting in relaxed surface coverage. In this section,
we will derive the equilibrium RSC distribution, use this
distribution to calculate the equilibrium value of ϕ on a lattice,
and compare this result with that generated from SSA. In a
straightforward manner, we will first calculate the canonical
partition function Z(k,n,β) and use this to calculate the
probability of observing a given state. The resulting equilibrium
occupied volume fraction can be obtained through the
assignment of the Boltzmann-weighted probability to the
occupied volume fraction of each corresponding state.
We extend the notation of section 3 through the introduction

of extended integer partitions, wherein the {νk}ith partition is
appended with zeros such that the length of each extended
partition {μk}i is equal to n, i.e., λ({μk}i) = n. For example, for k
= 3 macromolecules binding to n = 5 sites, the allowed OC in
the extended partition space are {μ3}1 = {1, 1, 1, 0, 0}, {μ3}2 =
{2, 1, 0, 0, 0}, and {μ3}3 = {3, 0, 0, 0, 0} (cf. the OC described
in section 3). We denote the jth element of the ith extended
partition for the integer k as {μk}i

j.
The total number of overlapping contacts for each allowed

OC, irrespective of the distribution (equilibrium or non-
equilibrium), is given by

∑μ μ μ= −
λ ν

=

({ } )
1
2

{ } ({ } 1)i k i
j

k i
j

k i
j

1

({ } )k i

(29)

As the energy is pairwise additive, it is proportional to this
quantity, i.e., Ei is given by ϵ i({μk}i) for the ith level. For k ≤ n
the canonical partition function is

∑β μ= β μ

=

− ϵZ k n g( , , ) ({ } )e
i

p k

i k i
1

( )
({ } )i k i

(30)

where gi is the degeneracy of the ith extended partition. Note
that the sum in eq 30 is over the integer partitions, not the
energy levels themselves. In lattice-based systems, the
calculation of the energy of each state is often trivial and
consequently the determination of the degeneracy is often the
principal hurdle in the evaluation of Z.66,67 There is no
contribution to the sum for k > n. This is a consequence of the
fact there are no partitions of length greater than n because the
length of such partitions would exceed the number of binding
sites. Let p(k,j) denote the number of integer partitions of k
with exactly j parts. The sum of p(k,j) over all 1 ≤ j ≤ k can
then be denoted as p(k), i.e.,

∑≡
=

p k p k j( ) ( , )
j

k

1 (31)

Let denote the set of all integer partitions of k and j denote

the set of integer partitions with exactly j parts: j ⊆ . By
restricting the sum in eq 30 over partitions with less than or
equal to n parts, we arrive at the canonical partition function for
all ϕ0 values, including cases with k > n,
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We have substituted the exponential Boltzmann factors in eq 32
with the parameter δ, given by eq 2.
As noted previously, the total number of microstates for k

distinguishable macromolecules binding to n distinguishable
sites is nk. For each set of partitions of length i, i.e., i, we can
thus sum over the size of each set through
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where

= !
− !

q n i
n

n i
( , )

( )
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is a permutation operator and S2 is a Stirling number of the
second kind. In eq 33, each term in the sum is the number of
microstates contributed to the total number of microstates by
partitions of length i. We now need the number of
permutations of each extended partition. Consider the number
for ways of ordering k distinguishable macromolecules taken
{μk}i

1, {μk}i
2, {μk}i

3, ..., {μk}i
λ{(vk}i) at a time. The number of these

permutations is given by
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The product in the denominator can be truncated at the index
value j = λ({νk}i) as the remaining terms in the product are
equal to unity. Let {Ωk}i represent the occupancy vector of the
extended partition {μk}i,

Ω = o o o o o{ } { , , , , ..., }k i k0 1 2 3 (36)

where ol is the number of sites with l bound macromolecules.
Note that although the index of {ωk} varies from 1 to k, the
index of {Ωk} varies from 0 to k. For k = 3 and n = 5, the
occupancy vectors are {Ω3}1 = {2, 3 , 0, 0}, {Ω3}2 = {3, 1, 1, 0},
and {Ω3}3 = {4, 0, 0, 1}. We define a permutation operator

Ω = !
! ! !··· !

Q
n

o o o o
({ } )k i

k

{p}

0 1 3 (37)

that counts the permutations with repeated elements of {Ωk}i.
The degeneracy of the ith allowed partition belonging to j

and its corresponding extended partition can therefore be
expressed as

μ μ= Ωg Q({ } ) ({ } ) ({ } )i k i k i k i
{P}

(38)

For consistency, it can be verified that
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and
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Combining eqs 32 and 38, the equilibrium occupied volume
fraction ϕE can be expressed as
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where jmax = k if k ≤ n and jmax = n otherwise. At the limiting
values of δ, the well-known values for ϕ are recovered:
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To validate the analytical expression for ϕE, MC simulations
were performed on systems with various values of δ, ϕ0, and
number of binding sites n. In these simulations, which were
implemented using the Metropolis algorithm,68,69 an initial
random configuration was first relaxed to an equilibrium state
by generating 106 configurations before a sampling phase was
initiated. During the sampling phase, 106 configurations were
generated. The ensemble average of these spatial states is the
measured numerical result for ϕE. As shown in Figure 5, the
results of these simulations are in excellent agreement with the
result given by eq 41. For systems with n = 2 binding sites, the
partition function is trivially solved and we employ this case to
illustrate the variation of ϕE with n.
A comparison between the equilibrium results for ϕE, given

by eq 41, and the nonequilibrium results for ϕ generated by the
SSA procedure, and given by eq 22, are shown in Figure 5 for
various system parameter values. At low densities (ϕ0 ≤ 0.5)
the equilibrium and SSA results are in close agreement but
show increasing deviation as n is increased. In this density
regime, a linear interpolation between ϕ values at the δ = 0 and
δ = 1 limits was seen earlier to yield satisfactory results for
systems governed by stochastic bounded potentials,33 and this
trend persists in the present lattice-based systems.
As the density of the system is increased, large deviations

between the equilibrium and nonequilibrium SSA results are
observed. At ϕ0 = 1.0, ϕ shows a convex functional shape
because, for small values of δ, macromolecules are increasingly
jammed into occupied sites. The result for the equilibrium RSC
distribution is decreased with respect to the ϕ values generated
by SSA. This decrease is caused by the propensity of
macromolecules to move onto sites that are already occupied,
increasing the number of multiple-occupation sites. In the SSA
procedure this effect is absent as incident macromolecules bind
irreversibly. For ϕ0 = 1.5, the system is overpacked as k > n. In
this regime, macromolecules increasingly bind to already
occupied sites, and ϕ shows a concave functional shape,
differing sharply from cases with ϕ0 ≤ 1. Interestingly, at large
n, ϕE is an approximately linear function of δ and ϕ values
generated by SSA continue to show strong nonlinear behavior.
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6. OFF-LATTICE INTERACTIONS
On continuum state spaces, systems whose dynamics are
governed by deterministic bounded potentials form metastable
crystalline phases at high densities (large ϕ0).

32,40,52,59 Bounded
potentials have also been realized stochastically,33 where the
pairwise interaction between a set of particles i and j is
described by the following equation:

σ

σ δ

σ δ
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V r

r

r a t
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0,

0, and ( )

, and ( )
ij ij
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S col

col (43)

In dynamical simulations, eq 43 is implemented by generating a
random number aij ∈ [0, 1] at the time of collision tcol between
particles i and j. If aij(tcol) > δ, the particles interact via a hard
(HC) potential and collide elastically; otherwise, the particles
interpenetrate without interacting. As aij is generated each time
the particles collide, the interaction (hard or ideal) between a
set of particles can change many times throughout the
simulation. In the potential given by eq 43, as in the SSA
algorithm, δ is a softness parameter, bridging completely hard
(δ = 0) and completely soft (δ = 1) behavior. At intermediate
values (0 < δ < 1), the mixing of hard collisions and soft ideal
interactions generates complex spatial arrangements, including
clustering regimes at large densities.34

To study the applicability of eq 22 to systems that include
off-lattice interactions, molecular dynamics (MD) simulations70

were performed on a system of k = 20 particles (disks)
constrained to move on a periodic surface of area , with each
particle having a diameter σ and mass m. The potential between
each pair of particles in these simulations is given by eq 43. To
assign the initial position of each particle, a uniform lattice was
constructed in and the center of each particle was placed on
a distinct lattice site. The initial velocities were sampled from a
Boltzmann distribution, and the system was then evolved
through a time-driven hard-sphere algorithm71 wherein the
particles are treated as semihard disks moving on a two-
dimensional surface. The underlying softness of the particle−
particle interactions is adjusted through the parameter δ.
The MD simulations were performed in two phases. First,

the system was spatially relaxed for 104 collisions. The
relaxation phase was implemented to achieve an equilibrium
structure. In the second phase, ϕ is measured using MC
integration.29,31,33,34 The MC integration approach involves
generating a large number of random coordinates in and
checking if those coordinates are overlapped by any particle
from the system. The ratio of sampling points that are
overlapped to the total number of points generated is ϕ. For
each parameter set {δ,ϕ0}, 104 frames were integrated by
generating 106 sampling points per frame. To confirm that the
system is in an equilibrium state during this sampling phase,
simulations were also performed with the initial positions of the
particles chosen randomly. The results measured using random
initial positions were in agreement with those measured using a
uniform lattice as the initial configuration. The volume fraction
ϕ0 is the occupied volume fraction of the system when no
particles overlap. On a continuum state space this volume
fraction is ϕ0 = kv/ where v = πσ2/4 is the area of a single
disk. When the particles are allowed to overlap (δ > 0), the
observed volume fraction ϕ is less than ϕ0.
The inclusion of off-lattice interactions generates a different

distribution of states than those derived in eqs 22 and 28 due to
the propensity for particles to be pushed into overlapping
configurations by neighboring particles. To account for
multibody effects in the distribution of spatial configurations,
the pairwise softness parameter δ must be replaced with a
multibody induced softness parameter ζ, which can be derived
from the effective pairwise potential between two particles. We
have previously shown that in these systems the softness
parameter δ has a significant influence on the form of the radial
distribution function g(r)33,34 and therefore this distribution is
parametrized by δ: g(r) = g(r;δ). The potential of mean force
(PMF), denoted as w(r;δ), between a pair of particles acts
along the line connecting their centers and can expressed
through g(r;δ) from the relationship

δ = β δ−g r( ; ) e w r( ; )
(44)

where β = 1/kBT. An integral of e−βw(r;δ) over the diameter of a
single particle (the region where overlaps occur) is a sum of
Boltzmann-weighted pairwise configurations, induced by
interactions with all other particles in the system. The ratio
of this multibody induced distribution to the ideal (δ = 1)
distribution

∫
∫

ζ δ =

σ β δ

σ β

−

−

r

r
( )

e d

e d

w r

w r
0

( ; )

0
( ;1)

(45)

defines ζ. The mapping δ→ ξ must be used in eqs 22 and 28 to
account for off-lattice interactions.

Figure 5. Fraction of occupied sites ϕ for ϕ0 = 0.5 (top), ϕ0 =1.0
(middle), and ϕ0 = 1.5 (bottom) as a function of δ. For each value of
ϕ0, results are shown for n = 2 (blue), n = 10 (green), and n = 30 (red)
binding sites. All results are shifted vertically by Δϕ ∈ {−0.05, −0.1},
when n ∈ {10, 30}, respectivelty, for visual clarity. The dashed curves
are the analytical results, given by eq 22, for a system undergoing SSA.
Each circular marker is the result of 106 MC simulations for a system
undergoing SSA. The analytical RSC distribution, given by eq 41, is
shown as a solid curve. Each square marker is the result measured from
106 configurations generated using the Metropolis MC algorithm for
the RSC distribution.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp505207h | J. Phys. Chem. B 2014, 118, 14092−1410214099



Figure 6 shows the results for ϕ given by the lattice model
and the MF model, both with ζ mapping, and the results

measured from MD simulations. The results are in excellent
agreement apart from the small-δ (<0.05), large-ϕ0 (=0.769)
regime. The compared theoretical expressions account only for
acceptance and rejection outcomes, and in this regime the PMF
has attractive sections and forms metastable wells in the
overlapping region (0 ≤ r < σ), causing deviation. The well
depth of the PMF in the overlapping region, ΔV = w(σ−;δ) −
w(0;δ), increases at higher densities and lower δ values. For ϕ0
= 0.25 and δ = 0.75, ΔV ≈ 0.03 kBT, whereas for δ = 0.01, ΔV
≈ 0.9 kBT. At the highest density studied, ϕ0 = 0.769, for δ =
0.75, ΔV ≈ 0.1 kBT and for δ = 0.01, ΔV ≈ 5 kBT. Thus, at
large densities and small interparticle softness, a distinct
transition to a cluster-forming regime is observed. The
deviations between the MF results and the results measured
from MD simulations, as shown in Figure 6, are caused by this
phase transition which is not included in the derivation of eq
28. This clustering phenomenon is in agreement with that
previously observed in systems governed by deterministic38 and
stochastic34 bounded potentials. As δ is moved slightly from the
δ = 0 limit, ϕ decreases drastically due to pressure pushing the
particles into overlapped states. As higher densities are
approached, the lattice model gives a slightly better prediction
of ϕ with respect to the MF model. This is expected, as
configurations on the continuum become more lattice-like
when the available free volume for each particle decreases.

7. CONCLUSIONS
Motivated by the design of mesoscale devices with unique
functionalities, we have obtained analytic and numerical
relationships for the characteristic surface coverage in the
sequential adsorption of soft macromolecules to a solid
substrate with discrete binding sites. The exact fraction of
occupied binding sites ϕ and the site occupancy distributions
have been solved exactly for a developed avoidance-modified
multiple occupancy model. The results of this derivation have
been confirmed by comparison with Monte Carlo (MC)
simulations. Due to the complexity of the exact expression at
the thermodynamic limit, a mean field (MF) derivation for ϕ
was presented and compared with the exact result and results

measured from MC simulations. We have found that as the
thermodynamic limit is approached, the MF expression
converges to the exact result. Moreover, we conjecture that
the MF expression is exact at the thermodynamic limit for a
system consisting of discrete binding sites.
The inclusion of off-lattice interactions was realized using a

stochastic bounded potential which allows multiple macro-
molecules to occupy the same volume in a continuum
configuration space. Molecular dynamics (MD) simulations
were performed on a system of macromolecules confined to
move on a surface under the influence of a stochastic bounded
potential. The fraction of configuration space occupied by the
particle phase of the system was measured and compared with
the results given the exact and MF expressions derived for the
on-lattice sequential adsorption procedure. We find excellent
agreement between these results, which provides evidence that,
at the mesoscale, spatial configurations generated through
avoidance-modified sequential addition processes can be
smoothly mapped to the spatial configurations of a system in
thermodynamic equilibrium. The relaxed surface coverage
mechanism following the SSA has also been obtained directly
from theory, confirmed by simulation, and seen to lead to
reduced occupied volume fractions.
The results presented in this article elucidate the range of

clustering behavior and accessible structural configurations due
to the soft and complex fluid interactions. Such interactions can
arise at the mesoscopic length scales of computational models
when the forces acting on atomistic degrees of freedom are
coarse-grained. Fabrication processes involving the adsorption
of particles on a surface can generally be modeled through the
stacking of nonoverlapping building blocks. The present work
includes the possibility that the interparticle interactions are
soft enough to allow overlaps. Fabrication utilizing such
particles could thus lead to very different kinds of assemblies
(with larger effective densities) and may be useful in creating
new devices.
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